Do $T\overline{T}$ Deformations reproduce 2D gravity? An Operator Algebra approach

Rahul Poddar

In Collaboration with Matthias Harksen and Vyshnav Mohan
University of Iceland

32nd Nordic Network Meeting on "Strings, Fields and Branes"

Table of contents

Introduction to Operator Algebras

Review of $T\overline{T}$ Deformations

Proposal: $T\overline{T}$ has an operator algebra signature of gravity

Why Operator Algebras?

- What: algebra of bounded observables in a quantum theory
- ▶ Natural setting for calculating Entanglement entropy and related quantities
- Formalism for answering questions like:
 - Structure of states in the Hilbert space?
 - ▶ When can we factorize a Hilbert space?
 - What are the implications of causality and locality?
- ► Example: Entanglement entropy diverges for local relativistic QFTs ⇒ Hilbert space of a QFT can not be factorized into subregions

[Murray, von Neumann, Araki, Powers, Fredenhagen, Yngvason, Driesler, Bisognano, Wichmann etc]

Type Classification of von Neumann factors

- von Neumann algebra: A'' = A, where ' is the commutant
- ▶ von Neumann factor: $A \cap A' \sim \mathbb{C}1$.
- Classification of factors:
 - Type I: Minimal Projections, pure states, finite trace functional
 - ▶ Type II: No Minimal Projections, no pure states, renormalizable trace functional
 - Type III: No Minimal Projections, no pure states, no trace functional
- No minimal projections ⇒ no irreps of a sub-Hilbert space, and therefore by Schur's lemma there can be no sub-Hilbert space
- Modular hamiltonian K generates automorphisms in a von Neumann algebra: $e^{-isK}\mathcal{A}e^{isK}\subseteq\mathcal{A}$
- Spectrum of modular hamiltonian characterizes the type of von Neumann factor

Examples of different types of algebras

- ightharpoonup Type I_d : Finite dimensional quantum mechanical systems
- lacktriangle Type I_∞ : Infinite dimensional quantum mechanical systems
- ► Type III₁: any local relativistic QFT [Bisognano, Wichmann '75, '76]
- ▶ Type III_{λ} : specific $N \to \infty$ limit of N pairs of Bell pairs [Powers '67]
- ▶ Type II₁: de Sitter with an observer [Chandrasekaran, Longo, Penington, Witten '22]
- \blacktriangleright Type II_{∞} : JT gravity coupled with matter [Penington, Witten '23]

$T\overline{T}$ Deformations

Well defined for 2D translationally invariant QFT

$$\partial_{\lambda}S^{(\lambda)} = -\int d^2x \mathcal{O}_{T\overline{T}}, \quad \mathcal{O}_{T\overline{T}} \equiv \det T^{(\lambda)}$$

- ► Irrelevant deformation, however it is UV finite and integrable [Smirnov, Zamolodchikov '16]
- $\mathcal{O}_{T\overline{T}}$ factorizes: $\langle n|\mathcal{O}_{T\overline{T}}|n\rangle=\langle n|T|n\rangle\;\langle n|\overline{T}|n\rangle-\langle n|\Theta|n\rangle^2$, which implies deformed spectrum on the cylinder:

$$E_n^{\lambda} = rac{1}{2\lambda} \left(1 - \sqrt{1 - 4rac{\lambda}{R}E_n + 16rac{\lambda^2}{R^2}P_n^2}
ight)$$

Can compute deformed finite sized spectrum from factorizability of $\mathcal{O}_{T\overline{T}}$ operator [Zamolodchikov '04].

lacktriangle Flow equation of torus partition function follows ($\mu \equiv \lambda/R^2$) [Jiang, Datta '18]

$$\partial_{\mu}Z(\tau,\bar{\tau}|\mu) = \left[\tau_2\partial_{\tau}\partial_{\bar{\tau}} + \frac{1}{2}\left(i(\partial_{\tau} - \partial_{\bar{\tau}}) - \frac{1}{\tau_2}\right)\mu\partial_{\mu}\right]Z(\tau,\bar{\tau}|\mu)$$

Deformed partition functions

- Perturbative expansion: $Z(\tau, \bar{\tau}|\mu) = \sum_{p=0}^{\infty} \mu^p Z_p(\tau, \bar{\tau})$, where $Z_0(\tau, \bar{\tau}) = Z(\tau, \bar{\tau})$ is the undeformed partition function
- $ightharpoonup Z(au, ar{ au} | \mu)$ is modular invariant, μ transforms as a (-1, -1) modular form, therefore $Z_p(au, ar{ au})$ is a (p, p) modular form.
- ▶ $E_{8,1}$ WZW model with c=8: $Z(\tau,\bar{\tau})=|j(\tau)^{\frac{1}{3}}|^2$. First few terms of the expansion:

$$Z_{1} = \frac{\tau_{2}}{9|j|^{4/3}} j'\bar{j}'$$

$$Z_{2} = \frac{\tau_{2}}{162|j|^{10/3}} \left(3jj'' \left(3\bar{j}\tau_{2}\bar{j}'' - 2\tau_{2} \left(\bar{j}' \right)^{2} + 3i\bar{j}\bar{j}' \right) + (j')^{2} \left(-6\bar{j}\tau_{2}\bar{j}'' + 4\tau_{2} \left(\bar{j}' \right)^{2} - 6i\bar{j}\bar{j}' \right) + 3ijj' \left(2 \left(\bar{j}' \right)^{2} - 3\bar{j}\bar{j}'' \right) \right)$$

Deformed partition functions

- Perturbative expansion: $Z(\tau, \bar{\tau}|\mu) = \sum_{p=0}^{\infty} \mu^p Z_p(\tau, \bar{\tau})$, where $Z_0(\tau, \bar{\tau}) = Z(\tau, \bar{\tau})$ is the undeformed partition function
- $ightharpoonup Z(au, ar{ au} | \mu)$ is modular invariant, μ transforms as a (-1, -1) modular form, therefore $Z_p(au, ar{ au})$ is a (p, p) modular form.
- ▶ c=24 Meromorphic CFT (eg. Monster CFT): $Z(\tau,\bar{\tau})=|j(\tau)-\mathcal{N}|^2$, $\mathcal{N}\in\mathbb{Z}_{\leq 744}$ [Schellekens '92]. First few terms of the expansion:

$$\begin{split} Z_1 &= \tau_2 j' \bar{j}' \\ Z_2 &= \frac{\tau_2}{2} \big(i (j'' \bar{j}' - j' \bar{j}'') + \tau_2 j'' \bar{j}'' \big) \\ Z_3 &= \frac{\tau_2}{12} \big(9j'' \bar{j}'' - 3j''' (\bar{j}' - 2i\tau_2 \bar{j}'') - 3\bar{j}''' (j' + 2i\tau_2 j'') + 2\tau_2^2 j''' \bar{j}''' \big) \end{split}$$

Note that the value of \mathcal{N} (744-number of spin 1 currents) does not affect the deformed partition function ($T\overline{T}$ does not see currents like momenta)

Deformed partition functions

▶ Resumming these series require the use of the remarkable identity [Mahler '69]:

$$\frac{j'''(\tau)}{j'(\tau)} - \frac{3}{2} \left(\frac{j''(\tau)}{j'(\tau)} \right)^2 + \frac{j(\tau)^2 - 1968j(\tau) + 2654208}{2j(\tau)^2(j(\tau) - 1728)^2} j'(\tau)^2 = 0$$

Another useful tool is writing the solution as an integral equation

$$Z(\tau, \bar{\tau}|\mu) = \frac{\tau_2}{\mu} \int \frac{d^2\sigma}{\sigma_2^2} e^{-\pi\frac{\mu}{\sigma_2}|\tau-\sigma|^2} Z(\sigma, \bar{\sigma}|0)$$

► The integration kernel can be rewritten as a coupling to "flat JT" [Dubovsky, Gorbenko, Mirbabayi '17] [Dubovksy, Gorbenko Hérnandez-Chifflet '18]

$$S_{T\overline{T}} = S_0(\phi, g) + \int \sqrt{-g} \left(\varphi R + \frac{1}{\lambda} \right)$$

Holographic bulk dual to $T\overline{T}$ -deformed CFT

What does $T\overline{T}$ deformation do in the bulk?

- Move the CFT into the bulk [McGough, Mezei, Verlinde '16] Radial Wheeler-DeWitt equation reproduces $T\overline{T}$ flow, only for $\lambda < 0$
- Mixed boundary conditions [Guica, Monten '19] $\delta \partial_{\lambda} S = \partial_{\lambda} \delta S \text{ imply flow equations for the metric and stress tensor and interpret them as mixed boundary conditions from the bulk, reproduce radial cutoff for empty AdS, <math>\lambda < 0$
- ▶ Glue on AdS [Apolo, Hao, Lai, Song '23] For $\lambda>0$, attach auxilliary AdS to the boundary, reproduce mixed boundary conditions

Can a $T\overline{T}$ deformation change the von Neumann factor?

Evidence for why a $T\overline{T}$ deformed CFT has a von Neumann factor of type II_{∞}

- ► Irrelevant deformation drastically changes UV behaviour
- ► Can be expressed as a coupling to flat JT gravity [Dubovsky, Gorbenko, Mirbabayi, Hérnandez-Chifflet '17, '18]
- ► Holographic entanlgement entropy: RT surface has finite area [Chen, Chen, Hao '18] [Lewkowycz, Liu, Silverstein, Torroba '19]
- Renyi entropy on the sphere: UV finite entropy [Donnelly, Shyam '18]
- Finite Entanglement entropy in string theory [Dabholkar, Moitra '23]
- lacktriangle Breakdown of the split property, therefore not type I [Asrat, Kudlur-Flam '20]
- Locality is required for type III

ລັ	<u> </u>	₹ <i>1</i> 1/
Σ	رحفر	
2	7	75
_ `?	/s.=	T_{ij}^{r}
	J/5	34.

*	1	
Σ	7	D.
3/2/		办
	٥/s	34

Thank You!