Do $T \bar{T}$ Deformations reproduce 2D gravity? An Operator Algebra approach

Rahul Poddar
In Collaboration with Matthias Harksen and Vyshnav Mohan
University of Iceland

$32^{\text {nd }}$ Nordic Network Meeting on "Strings, Fields and Branes"

Table of contents

Introduction to Operator Algebras

Review of $T \bar{T}$ Deformations

Proposal: $T \bar{T}$ has an operator algebra signature of gravity

Why Operator Algebras?

- What: algebra of bounded observables in a quantum theory
- Natural setting for calculating Entanglement entropy and related quantities
- Formalism for answering questions like:
- Structure of states in the Hilbert space?
- When can we factorize a Hilbert space?
- What are the implications of causality and locality?
- Example: Entanglement entropy diverges for local relativistic QFTs \Longrightarrow Hilbert space of a QFT can not be factorized into subregions
[Murray, von Neumann, Araki, Powers, Fredenhagen, Yngvason, Driesler, Bisognano, Wichmann etc]

Type Classification of von Neumann factors

- von Neumann algebra: $\mathcal{A}^{\prime \prime}=\mathcal{A}$, where ${ }^{\prime}$ is the commutant
> von Neumann factor: $\mathcal{A} \cap \mathcal{A}^{\prime} \sim \mathbb{C} \mathbb{1}$.
- Classification of factors:
- Type I: Minimal Projections, pure states, finite trace functional
- Type II: No Minimal Projections, no pure states, renormalizable trace functional
- Type III: No Minimal Projections, no pure states, no trace functional
- No minimal projections \Longrightarrow no irreps of a sub-Hilbert space, and therefore by Schur's lemma there can be no sub-Hilbert space
- Modular hamiltonian K generates automorphisms in a von Neumann algebra: $e^{-i s K} \mathcal{A} e^{i s K} \subseteq \mathcal{A}$
- Spectrum of modular hamiltonian characterizes the type of von Neumann factor

Examples of different types of algebras

- Type I_{d} : Finite dimensional quantum mechanical systems
- Type I_{∞} : Infinite dimensional quantum mechanical systems
- Type III_{1} : any local relativistic QFT [Bisognano, Wichmann '75, '76]
- Type III_{λ} : specific $N \rightarrow \infty$ limit of N pairs of Bell pairs [Powers ' 67$]$
- Type II_{1} : de Sitter with an observer [Chandrasekaran, Longo, Penington, Witten '22]
- Type II_{∞} : JT gravity coupled with matter [Penington, Witten '23]

$T \bar{T}$ Deformations

- Well defined for 2D translationally invariant QFT

$$
\partial_{\lambda} S^{(\lambda)}=-\int d^{2} x \mathcal{O}_{T \bar{T}}, \quad \mathcal{O}_{T \bar{T}} \equiv \operatorname{det} T^{(\lambda)}
$$

- Irrelevant deformation, however it is UV finite and integrable [Smirnov, Zamolodchikov '16]
- $\mathcal{O}_{T \bar{T}}$ factorizes: $\langle n| \mathcal{O}_{T \bar{T}}|n\rangle=\langle n| T|n\rangle\langle n| \bar{T}|n\rangle-\langle n| \Theta|n\rangle^{2}$, which implies deformed spectrum on the cylinder:

$$
E_{n}^{\lambda}=\frac{1}{2 \lambda}\left(1-\sqrt{1-4 \frac{\lambda}{R} E_{n}+16 \frac{\lambda^{2}}{R^{2}} P_{n}^{2}}\right)
$$

Can compute deformed finite sized spectrum from factorizability of $\mathcal{O}_{T \bar{T}}$ operator [Zamolodchikov '04].

- Flow equation of torus partition function follows ($\mu \equiv \lambda / R^{2}$) [Jiang, Datta '18]

$$
\partial_{\mu} Z(\tau, \bar{\tau} \mid \mu)=\left[\tau_{2} \partial_{\tau} \partial_{\bar{\tau}}+\frac{1}{2}\left(i\left(\partial_{\tau}-\partial_{\bar{\tau}}\right)-\frac{1}{\tau}{ }_{2}\right) \mu \partial_{\mu}\right] Z(\tau, \bar{\tau} \mid \mu)
$$

Deformed partition functions

- Perturbative expansion: $Z(\tau, \bar{\tau} \mid \mu)=\sum_{p=0}^{\infty} \mu^{p} Z_{p}(\tau, \bar{\tau})$, where $Z_{0}(\tau, \bar{\tau})=Z(\tau, \bar{\tau})$ is the undeformed partition function
- $Z(\tau, \bar{\tau} \mid \mu)$ is modular invariant, μ transforms as a $(-1,-1)$ modular form, therefore $Z_{p}(\tau, \bar{\tau})$ is a (p, p) modular form.
- $E_{8,1}$ WZW model with $c=8: Z(\tau, \bar{\tau})=\left|j(\tau)^{\frac{1}{3}}\right|^{2}$. First few terms of the expansion:

$$
\begin{aligned}
Z_{1} & =\frac{\tau_{2}}{9|j|^{4 / 3}} j^{\prime} \bar{j}^{\prime} \\
Z_{2} & =\frac{\tau_{2}}{162|j|^{10 / 3}}\left(3 j j^{\prime \prime}\left(3 \bar{j} \tau_{2} \bar{j}^{\prime \prime}-2 \tau_{2}\left(\overline{j^{\prime}}\right)^{2}+3 i \bar{j} \bar{j}^{\prime}\right)\right. \\
& \left.+\left(j^{\prime}\right)^{2}\left(-6 \bar{j} \tau_{2} \bar{j}^{\prime \prime}+4 \tau_{2}\left(\bar{j}^{\prime}\right)^{2}-6 i \bar{j} \overline{j^{\prime}}\right)+3 i j j^{\prime}\left(2\left(\bar{j}^{\prime}\right)^{2}-3 \bar{j} \overline{j^{\prime \prime}}\right)\right)
\end{aligned}
$$

Deformed partition functions

\triangleright Perturbative expansion: $Z(\tau, \bar{\tau} \mid \mu)=\sum_{p=0}^{\infty} \mu^{p} Z_{p}(\tau, \bar{\tau})$, where $Z_{0}(\tau, \bar{\tau})=Z(\tau, \bar{\tau})$ is the undeformed partition function

- $Z(\tau, \bar{\tau} \mid \mu)$ is modular invariant, μ transforms as a $(-1,-1)$ modular form, therefore $Z_{p}(\tau, \bar{\tau})$ is a (p, p) modular form.
$>c=24$ Meromorphic CFT (eg. Monster CFT): $Z(\tau, \bar{\tau})=|j(\tau)-\mathcal{N}|^{2}$, $\mathcal{N} \in \mathbb{Z}_{\leq 744}$ [Schellekens '92]. First few terms of the expansion:

$$
\begin{aligned}
& Z_{1}=\tau_{2} j^{\prime} \bar{j}^{\prime} \\
& Z_{2}=\frac{\tau_{2}}{2}\left(i\left(j^{\prime \prime} \overline{j^{\prime}}-j^{\prime} \bar{j}^{\prime \prime}\right)+\tau_{2} j^{\prime \prime} \bar{j}^{\prime \prime}\right) \\
& Z_{3}=\frac{\tau_{2}}{12}\left(9 j^{\prime \prime} \bar{j}^{\prime \prime}-3 j^{\prime \prime \prime}\left(\bar{j}^{\prime}-2 i \tau_{2} \bar{j}^{\prime \prime}\right)-3 \bar{j}^{\prime \prime \prime}\left(j^{\prime}+2 i \tau_{2} j^{\prime \prime}\right)+2 \tau_{2}^{2} j^{\prime \prime \prime} \bar{j}^{\prime \prime \prime}\right)
\end{aligned}
$$

- Note that the value of \mathcal{N} (744-number of spin 1 currents) does not affect the deformed partition function ($T \bar{T}$ does not see currents like momenta)

Deformed partition functions

- Resumming these series require the use of the remarkable identity [Mahler '69]:

$$
\frac{j^{\prime \prime \prime}(\tau)}{j^{\prime}(\tau)}-\frac{3}{2}\left(\frac{j^{\prime \prime}(\tau)}{j^{\prime}(\tau)}\right)^{2}+\frac{j(\tau)^{2}-1968 j(\tau)+2654208}{2 j(\tau)^{2}(j(\tau)-1728)^{2}} j^{\prime}(\tau)^{2}=0
$$

- Another useful tool is writing the solution as an integral equation

$$
Z(\tau, \bar{\tau} \mid \mu)=\frac{\tau_{2}}{\mu} \int \frac{d^{2} \sigma}{\sigma_{2}^{2}} e^{-\pi \frac{\mu}{\sigma_{2}}|\tau-\sigma|^{2}} Z(\sigma, \bar{\sigma} \mid 0)
$$

- The integration kernel can be rewritten as a coupling to "flat JT" [Dubovsky, Gorbenko, Mirbabayi '17] [Dubovksy, Gorbenko Hérnandez-Chifflet '18]

$$
S_{T \bar{T}}=S_{0}(\phi, g)+\int \sqrt{-g}\left(\varphi R+\frac{1}{\lambda}\right)
$$

Holographic bulk dual to $T \bar{T}$-deformed CFT

What does $T \bar{T}$ deformation do in the bulk?
> Move the CFT into the bulk [McGough, Mezei, Verlinde '16]
Radial Wheeler-DeWitt equation reproduces $T \bar{T}$ flow, only for $\lambda<0$

- Mixed boundary conditions [Guica, Monten '19]
$\delta \partial_{\lambda} S=\partial_{\lambda} \delta S$ imply flow equations for the metric and stress tensor and interpret them as mixed boundary conditions from the bulk, reproduce radial cutoff for empty AdS, $\lambda<0$
- Glue on AdS [Apolo, Hao, Lai, Song '23]

For $\lambda>0$, attach auxilliary AdS to the boundary, reproduce mixed boundary conditions

Can a $T \bar{T}$ deformation change the von Neumann factor?

Evidence for why a $T \bar{T}$ deformed CFT has a von Neumann factor of type II_{∞}

- Irrelevant deformation drastically changes UV behaviour
- Can be expressed as a coupling to flat JT gravity [Dubovsky, Gorbenko, Mirbabayi, Hérnandez-Chifflet '17, '18]
- Holographic entanlgement entropy: RT surface has finite area [Chen, Chen, Hao '18] [Lewkowycz, Liu, Silverstein, Torroba '19]
- Renyi entropy on the sphere: UV finite entropy [Donnelly, Shyam '18]
- Finite Entanglement entropy in string theory [Dabholkar, Moitra '23]
- Breakdown of the split property, therefore not type I [Asrat, Kudlur-Flam '20]
- Locality is required for type III

Thank You!

