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Motivation & Outline

What is 6d LST and Why?

LSTs: intermediate between local and gravitational theories, related by decompacti�cation

6D SUGRA

Scale: ✓
Global Symmetry: ×
T-duality: ✓

6D LST

Scale: ✓
Global Symmetry: ✓

T-duality: ✓

6D SCFT

Scale: ×
Global Symmetry: ✓

T-duality: ×

Decoupled from gravity

Attractive Properties: (capture features of both SUGRAs and SCFTs)

1 Contains interesting global symmetries in the T-dual network
2 LSTs have a 2-group structure → Constrain T-dualities

[Cordova, Dumitrescu, Intriligator'18,'20, Del Zotto, Ohmori'20]

3 Systematically engineered in F-theory geometry
[Bhardwaj, Del Zotto, Heckman, Morrison, Rudelius, Vafa'15]

Muyang Liu 3 / 21



Motivation & Outline

What is 6d LST and Why?

LSTs: intermediate between local and gravitational theories, related by decompacti�cation

6D SUGRA

Scale: ✓
Global Symmetry: ×
T-duality: ✓

6D LST

Scale: ✓
Global Symmetry: ✓

T-duality: ✓

6D SCFT

Scale: ×
Global Symmetry: ✓

T-duality: ×

Decoupled from gravity

Attractive Properties: (capture features of both SUGRAs and SCFTs)

1 Contains interesting global symmetries in the T-dual network
2 LSTs have a 2-group structure → Constrain T-dualities

[Cordova, Dumitrescu, Intriligator'18,'20, Del Zotto, Ohmori'20]

3 Systematically engineered in F-theory geometry
[Bhardwaj, Del Zotto, Heckman, Morrison, Rudelius, Vafa'15]

Muyang Liu 3 / 21



Motivation & Outline

What is 6d LST and Why?

LSTs: intermediate between local and gravitational theories, related by decompacti�cation

6D SUGRA

Scale: ✓
Global Symmetry: ×
T-duality: ✓

6D LST

Scale: ✓
Global Symmetry: ✓

T-duality: ✓

6D SCFT

Scale: ×
Global Symmetry: ✓

T-duality: ×

Decoupled from gravity

Attractive Properties: (capture features of both SUGRAs and SCFTs)
1 Contains interesting global symmetries in the T-dual network

2 LSTs have a 2-group structure → Constrain T-dualities
[Cordova, Dumitrescu, Intriligator'18,'20, Del Zotto, Ohmori'20]

3 Systematically engineered in F-theory geometry
[Bhardwaj, Del Zotto, Heckman, Morrison, Rudelius, Vafa'15]

Muyang Liu 3 / 21



Motivation & Outline

What is 6d LST and Why?

LSTs: intermediate between local and gravitational theories, related by decompacti�cation

6D SUGRA

Scale: ✓
Global Symmetry: ×
T-duality: ✓

6D LST

Scale: ✓
Global Symmetry: ✓

T-duality: ✓

6D SCFT

Scale: ×
Global Symmetry: ✓

T-duality: ×

Decoupled from gravity

Attractive Properties: (capture features of both SUGRAs and SCFTs)
1 Contains interesting global symmetries in the T-dual network
2 LSTs have a 2-group structure → Constrain T-dualities

[Cordova, Dumitrescu, Intriligator'18,'20, Del Zotto, Ohmori'20]

3 Systematically engineered in F-theory geometry
[Bhardwaj, Del Zotto, Heckman, Morrison, Rudelius, Vafa'15]

Muyang Liu 3 / 21



Motivation & Outline

Motivation and Goal

Based on:
1 2209.10551, 2212.05311, 2312.xxxxx with Del Zotto, Oehlmann
2 Work in progress with Braun, Del Zotto, Oehlmann

So far [Blum, Intriligator'97, Aspinwall, Morrison'97 .....]:

Heterotic strings on ALE spaces Xg = C2/Γg give rise to 6D (1,0) LSTs and inherit T-duality
LSTs associated to Heterotic Spin(32)/Z2 ALE instantons are Lagrangian and well-known
Most of LSTs for Heterotic E8 × E8 ALE instantons are unknown, few exceptions are studied

Goal: New LSTs and matched 2-group structure of T-dual partners

Method: F-theory geometric construction is powerful:

1 Explore ALE spaces of E-types, beyond brane realizations
2 Easily interpret 6D LST (packed into a quiver) by the geometric con�guration
3 Realize T-dual network as inequivalent elliptic �brations of the same geometry
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Review: Heterotic Little Strings & 2-groups

Generic E8 × E8 heterotic instantonic LSTs in HW picture

The instantonic LSTs in M-theory ← A stack of N M5 branes [Ho°ava, Witten'95]:

0-5

6-9

10

 N M5
M9 M9

. . .

The resulting theory depends on a choice of a �at connection encoded in:

µa : π1(S
3/Γg) ≃ Γg → E8 , for µa ≃ id , see [Aspinwall, Morrison'97]

The zero form global symmetry is determined by:

F (0)
a ≡ {g ∈ E8 | gh = hg ,∀h ∈ µa(Γg)} a = 1, 2

Now consider all other non-trivial possible choices

Determine fractional instantons by F-theory [Del Zotto, Heckman, Tomasiello, Vafa'14]
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Review: Heterotic Little Strings & 2-groups

Obtain the full LST

After the choice of a �at connection encoded in (µ1,µ2), we denote the corresponding theories:

KN(µ1,µ2; g) = T (µ1, g)
g TN−2(g, g)

g T (µ2, g)

T (µa, g): minimal 6d orbi-instanton theory associated to a single M9-M5 system
[Heckman, Morrison, Rudelius, Vafa'15, Mekareeya, Ohmori, Tachikawa, Zafrir'17, Frey, Rudelius'18]

TN−2(g, g): 6d conformal matter theory associated to N − 2 M5 branes
[Del Zotto, Heckman, Tomasiello, Vafa'14]

g
: fusion of the common factors g of the global symmetry of SCFTs

[Del Zotto, G. Lockhart'18, Heckman, Rudelius, Tomasiello'18]

N ≤ 2 cases deviate slightly from the structure above
→ Geometric engineering limits of pure Heterotic Strings on ALE singularities

Given the matching criteria (see next slide), we are able to chart the T-duality:

KN(µ1,µ2; g) ∼ K̃Ñ(λ; g̃) (Heterotic Spin(32)/Z2 instatons)
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Review: Heterotic Little Strings & 2-groups

6d LSTs of rank nT ↔ Quiver notations encoded by

[f1]
g1
n1 · · ·

gI
nI · · ·

gnT+1

nnT+1 [fnf ]:

(
ηIJ ηIA

ηAI 0

)
I , J = 1, ..., nT + 1

A = 1, ..., nf
, g = (g1, ..., gnT+1, f1, ..., fnf )

The Dirac pairing ηIJ : non-negative with a unique null eigenvector:

ηIJNJ = 0 gcd(N1, ...,NnT+1) = 1 NI > 0 (LST charges)

LSTs have generic continuous 2-group symmetry with matching criteria(
P(0) × SU(2)

(0)
R ×

∏
a F

(0)
a

)
×κ̂P ,κ̂R ,κ̂Fa

U(1)
(1)
LST

κ̂P , κ̂R and κ̂Fa (2-group structure constants)

κ̂F = −
∑nT+1

I=1 NIη
IA κ̂R =

∑nT+1
I=1 NIh

∨
gI

κ̂P = −
∑nT+1

I=1 NI (η
II − 2)

Coulomb branch dimension and amounts of Wilson line parameters

Dim(CB) = T + rk(G ) , Dim(WL) = rk(GF )
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Geometric Engineering of Novel LST families Review: Geometric Counterpart of 6D LST in F-theory

F-theory in a nutshell [Vafa'96, 2017 TASI lectures by Weigand and Cveti£, 2018 6D SCFT review by Heckman and Rudelius.....]

Axio-dilation �eld τ in IIB ↔ the behaviour of the complex structure of an elliptic curve

Introduce an auxillary torus to record τ ↔ An elliptic �bration π : Yn ↠ Bn−1

1 Elliptic �bre becomes singular over discriminant locus Σ ⊂ Bn−1

2 D7 brane stacks are located at component ΣI of the discriminant
3 After resolution, the �ber components over ΣI has intersection pattern as a�ne Dynkin diagram →

Fibration consistently realize gauge/�avor algebra

resolved �ber

Yn

Bn−1

Singular �ber

P

Eτ

ΣI

singularity

π

π
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Geometric Engineering of Novel LST families Review: Geometric Counterpart of 6D LST in F-theory

Review: Geometric Engineer 6D LST from F-theory

An elliptic �bered CY threefold X
Het/F Duality←−−−−−−−−−−−−→

Geometric Engineering
Physics of a 6d Heteorotic LST

F-theory Geometric Engineering Dictionary:

B2 is non-compact ↔ LST is decoupled from gravity
The intersection form of the F-theory base curve collection ↔ Dirac pairing matrix
Discriminant admits compact and non-compact components that D7 branes can wrap:

Compact components yield gauge degrees of freedom

Non-compact ones produce �avor symmetries

X may admit multiple inequivalent elliptic �brations:

T 2 → X

↓ π
B2

,

T 2 → X

↓ π̃
B̃2

After circle reduction, obtain the same 5d theory (inequivalent 6d uplifts)
Geometrically realize T-duality between these two 6d theories
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Geometric Engineering of Novel LST families Review: Geometric Counterpart of 6D LST in F-theory

F-theory Realization of 6D LSTs - Warmup

1 An elliptic �bered CY3 with generic base B2 = P1 × C supports E8 × E8 �avor algebra

2 Left: decorate additional rays, yield N small E8 instantons on the E8 × E8 �bration

· · ·

[e8] [e8]

1 2 2 1

[so32]

spN
0

3 Right: T-dual Spin(32)/Z2 theory with spN gauge group [Aspinwall, Morrison'97]

4 Consistently check for T-dual pairs by the matched data:

Dim(CB) = N + 1 , κ̂R = h∨g = N + 1 , κ̂P = 2

5 Additional rays can support non-trivial gauge algebra in more general constructions
↔ T-dual con�guration will be altered accordingly
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Geometric Engineering of Novel LST families Review: Geometric Counterpart of 6D LST in F-theory

A general example: The [e8]− eM7 − [e6] LST

Gauging the E8 × E6 �avor factors with M× e7's, we obtain

[e8]
e7
1

e7
2 . . .

e7
2 . . .

e7
2

e7
1︸ ︷︷ ︸

×M

[e6] , M-1 also counts number of M5 branes

Introduce the conformal matter factors [e7]− [e7] to obtain the full quiver

The T-dual �bration is given by:

sp2M−3

1∗
spM−3

1∗

[u1 × so26]
spM+7

1
[NF=1]

so4M+16

4
sp3M+1

1
so8M+4

4∗
sp3M−2

1
so4M+4

4∗
[NF=1]

,

They have matched data: Dim(CB) = 18M + 19 , κ̂R = 48M + 25

Fiber-Base-Duality: Most T-dual base topology are determined by gauging of the original theory

Muyang Liu 13 / 21
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Fiber-Base-Duality: Most T-dual base topology are determined by gauging of the original theory

Muyang Liu 13 / 21



Geometric Engineering of Novel LST families Exotic LSTs

LSTs with Discrete Holonomy

Consider a non-trivial global structure [Aspinwall, Morrison'98...]

MW (X ) = Zr ×MW (X )Tor ⇒ GT = GF×G
MWTor

Break the E8 �avor factors via a discrete holonomy µi = Zn

Example: consider a breaking to e7 × su2 and soM4N+8 gaugings:

[e7]
so4N+8

1
[su2]

so4N+8

2 . . .
so4N+8

2
so4N+8

1
[su2]︸ ︷︷ ︸

M×

[e7]

Has two more inequivalent toric �brations, �rst:

sp2N+M−3

1
spM−3

1∗

[so24]
sp2N+M+3

1
so8N+4M+4

4 . . .
sp4(N−k)+2M−4

1
so8(N−k)+4M−4

4 . . .
sp2M
1

so4M+4

4∗︸ ︷︷ ︸
2N×

spM−1

1 [so8]

This chain has the full so
(1)
4N+8 topology! ↔ Fiber-Base-Duality
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Geometric Engineering of Novel LST families Exotic LSTs

Z2 Discrete Holonomy LSTs

The third �bration has the quiver:

[su16 × u1]
su4N+2M+6

2
su8N+4M−4

2
su8N+4M−12

2
su8N+4M−20

2 . . .
su4M+4

2
sp2M−2

1︸ ︷︷ ︸
N×

su4N+2M−2

2

so
(1)
4N+8 base shape is folded to an su

(2)
N+3

T-dual−−−→

The 2-groups and CB dimension are matched and given below as

Dim(CB) = 4N2 + 4NM + 8N + 6M + 2 , κ̂R = 8N2 + 8NM + 8N + 8M + 2
Muyang Liu 15 / 21



Geometric Engineering of Novel LST families Geometric engineering of pure heterotic strings

Geometric engineering of heterotic strings

No full M5 branes but only the M9 fractions:

1 Orbi-instanton quiver → Reduced theories → Fuse two reduced theories:

K0(µ1
,µ

2
; g) = Tred (µ1

; g)
g

T̂red (µ2
; g)

= [f(µ
1
)]

h1
n1

h2
n2 . . .

hr1
nr1

g
mr1+1

ĥr2

n̂r2 . . .
ĥ2

n̂2
ĥ1

n̂1 [f(µ
2
)]

2 For A-type singuarities:

K0(E8,E8; suk) = [E8] 1 2
su2
2

su3
2 · · ·

su
k−1

2
su

k

2
N
f
=2

su
k−1

2 · · ·
su3
2

su2
2 2 1 [E8]

3 If k is even, the T-dual theory is

K̃(so32; suk) = [so32]
sp2k
1

su4k−8

2
su4k−16

2 · · ·
su8
2 1 [su2]

4 If k is odd, the T-dual theory is

K̃(so32; suk) = [so32]
sp2k
1

su4k−8

2
su4k−16

2 · · ·
su12
2

su4
1

NA=1
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Geometric Engineering of Novel LST families Geometric engineering of pure heterotic strings

Fronzen Singularity and Incomplete fusion

In M-theory, can partially freeze the Xg singularities by torsional C3 �uxes at in�nity
[De Boer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi'01, Tachikawa'15]∫

S3/Γg

C =
ℓ

d

This results subalgbra

g so2k+8 e6 e7 e8
l
d

1
2

1
2

1
3 ,

2
3

1
2

1
3 ,

2
3

1
4 ,

3
4

1
2

1
3 ,

2
3

1
4 ,

3
4

1
5 ,

2
5 ,

3
5 ,

4
5

1
6 ,

5
6

h spk su3 − so7 su2 − f4 g2 su2 − −

→ An incomplete fusion (decouple the quiver at the i−th node) [Mekareeya, Ohmori, Shimizu, Tomasiello'17]

Tred(µ; g) = [f(µ)]
h1
n1

h2
n2 . . .

hi
ni . . .

hr
nr [g]
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Exceptional non-simply laced fusion

Consider Tred(e6 : e8) → Read o� the unbroken gauge algebra: e.g f4

[e6] 1
su3
2 1

f4
5 1

g2
3

sp2
2 2 1 [e8] and [e8] 1 2

sp1
2

g2
3 1

f4
5︸ ︷︷ ︸

Fusion

1
su3
2 1 [e6]

Yield LST :

[e6] 1
su3
3 1

f4
4

[NF=1]
1

su3
3 1 [e6]

This LST has a T-dual partner

[so20]
sp4
1

so12
4 1

[su22]
2 2 [su2]
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Summary:
1 Construct a plethora of T-dual LSTs probing various types of singularity veri�ed by Coulomb and

tensor branch data matching
2 Find interesting exotic LSTs with torsional structure
3 Explore geometric engineering limit of Heterotic strings

Outlook:
1 Turn towards non-heterotic LSTs given by systems without M9 branes
2 Incorporate the possibility of twisted compacti�cations
3 Relate heterotic LSTs to the underlied nested K3 �bration of CY3, study unexplored reducible K3

�brations occur in the geometry of LSTs
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Summary and Outlook

Thank you!
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