Leading-order gravitational radiation to all spin orders

Kays Haddad
December 6, 2023
Nordic Network Meeting, University of Stavanger

\mathfrak{a}_{1}
$\frac{G M}{R} \ll 1 \quad v \ll 1$

classical scattering (GR)

(classical limit of)
QFT scattering amplitudes

KMOC formalism for classical observables

calculate

$$
\left.\langle\text { out }| \mathcal{O} \mid \text { out }\rangle=\langle\text { in }| S^{\dagger} \mathcal{O} S \mid \text { in }\right\rangle
$$

where quantum properties of "in" state unresolvable: $\lambda_{\text {grav }} \gg \ell_{w} \gg \lambda_{\mathrm{DB}}$

KMOC formalism for gravitational waveform
[Cristofoli, Gonzo, Kosower, O'Connell, '21]
waveform operator:

$$
\mathfrak{h}_{\mu \nu}(x)=\int d \Phi(k) \sum_{h}\left[e^{-i k \cdot x} a_{h}(k) \varepsilon_{\mu}^{(h) *}(k) \varepsilon_{\nu}^{(h) *}(k)+e^{i k \cdot x} a_{h}^{\dagger}(k) \varepsilon_{\mu}^{(h)}(k) \varepsilon_{\nu}^{(h)}(k)\right]
$$

with expectation value (leading order in coupling, observed at a distant position)

gravitational waveform for Kerr scattering

$$
\kappa h_{\mu \nu}(x)=\frac{\kappa}{4 \pi|x|} \sum_{h} \varepsilon_{\mu}^{(h) *} \varepsilon_{\nu}^{(h) *} \int_{\omega, q_{1}, q_{2}} \hat{\delta}\left(2 p_{1} \cdot q_{1}\right) \hat{\delta}\left(2 p_{2} \cdot q_{2}\right) \hat{\delta}^{D}\left(q_{1}+q_{2}-k\right) e^{i\left(q_{1} \cdot b_{1}+q_{2} \cdot b_{2}-k \cdot x\right)}
$$

$\frac{i}{q_{1}^{2}} \sum_{h} \mathcal{M}_{3}\left(p_{1},-q_{1}^{h}\right) \mathcal{M}_{4}\left(p_{2}, q_{1}^{h},-k^{h_{k}}\right) \vdots \vdots \frac{i}{q_{2}^{2}} \sum_{h} \mathcal{M}_{3}\left(p_{2},-q_{2}^{h}\right) \mathcal{M}_{4}\left(p_{1}, q_{2}^{h},-k^{h_{k}}\right) \vdots$

gravitational waveform for Kerr scattering

$$
\mathcal{M}_{3}\left(p,-q^{h}\right)=-\kappa\left[p \cdot \varepsilon_{h}(q)\right]^{2} \exp (h q \cdot \mathfrak{a}) \quad \begin{aligned}
& \text { [Levi, Steinhoff, '15; Vines, '17; Guevara, Ochirov, Vines, } \\
& \text { '18; Chung, Huang, Kim, Lee, '18] }
\end{aligned}
$$

candidate up to $\mathcal{O}\left(\mathfrak{a}^{6}\right)$ [Bautista, Guevara, Kavanagh, Vines, '22]

[^0]
gravitational waveform for Kerr scattering

$$
\begin{aligned}
& \kappa h(x)=-\frac{\pi G^{2}}{|\boldsymbol{x}| m_{1} m_{2}}\left[h_{f}(x)+h_{c}(x)\right] \\
& \int h_{f}(x)=\frac{1}{\left(p_{1} \cdot \rho\right)^{2}}\left[\tilde { r } _ { (1) , 0 } ^ { - , \mu _ { 1 } \mu _ { 2 } } \mathcal { I } _ { (1) , \mu _ { 1 } \mu _ { 2 } } \left(b_{(1),-)}\right.\right. \\
& +\sum_{s=0}^{\infty} \frac{1}{s!} \mathcal{L}_{(1), s}^{\mu_{1}, \ldots \mu_{s+2}} \mathcal{I}_{(1), \mu_{1} \ldots \mu_{s+2}}\left(b_{(1),+)}\right]+(1 \leftrightarrow 2) \\
& \mathcal{I}_{(1)}^{\mu_{1} 1 \cdots \mu_{n}}(b) \equiv \int_{q_{2}} \hat{\delta}\left(v_{2} \cdot q_{2} \frac{q_{2}^{\mu_{2}} \ldots q_{2}^{\mu_{n}} e^{i q_{2} \cdot b}}{q_{2}^{2}\left(q_{2} \cdot \rho\right)\left(v_{1} \cdot q_{2}\right)}\right. \\
& \mathcal{J}_{(1)}^{\mu_{1} \ldots \mu_{n}}(b) \equiv \int_{q_{2}} \hat{\delta}\left(v_{2} \cdot q_{2}\right) \frac{e^{i q_{2} \cdot b}}{q_{2}^{2}} q_{2}^{\mu_{1}} \ldots q_{2}^{\mu_{n}} \\
& h_{c}(x)=\frac{32 m_{1} v_{1}^{\mu_{1}} v_{1}^{\mu_{2}}}{\left(v_{1} \cdot \rho\right)^{3}}\left[\sum_{s=5}^{\infty} C_{4}^{(s), \mu_{3} \ldots \mu_{s}}\left(\mathfrak{a}_{1}\right) \mathcal{J}_{(1), \mu_{1} \ldots \mu_{s}}\left(b_{(1)}\right)\right]+(1 \leftrightarrow 2)
\end{aligned}
$$

gravitational waveform for Kerr scattering (agreement with [De Angelis, Gonzo, Novichkov, '23; Brandhuber, Brown, Chen,
Gowdy, Travaglini, '23])

scattering amplitudes powerful tools for computing classical observables expression for leading-order scattering waveform to all spin orders
checks: agreement with concurrent calculations, agreement with classical large-retarded-time computations
future directions
better understanding of Kerr amplitudes
higher-order observables
relation to bound systems

[^0]: - " [Arkani-Hamed, Huang, Huang, '17; Chung, Huang, Kim, Lee, '18; Chiodaroli, Johansson, Pichini, '20; Aoude, KH, Helset, '22; Bern, Kosmopoulos, Luna, Roiban, Teng, '22; Cangemi, Chiodaroli, Johansson, Ochirov, Pichini, Skvortsov, '22+'23; Bautista, Guevara, Kavanagh, Vines, '22; Bjerrum-Bohr, Chen, Skowronek, '23; Scheopner, Vines, '23]

