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Motivation

In this talk, I will tell you that the integrable system (Chain) can emerge from a
two-dimensional supersymmetric gauge theory.
But why do we need this fact?

I It is well-investigated that the Gromov-Witten theory can be regarded as a topological
sector of two-dimensional supersymmetric gauge theory (GLSMs).

I Mathematicians used the techniques of integrable systems to prove the theorems of the
Gromov-Witten theory.

I Physicists found several similarities between the supersymmetric gauge theory and the
integrable system. For example, vacuum equations of gauge theory are the same as the
Bethe-ansatz equations of the corresponding integrable system.

I Possible others ...

One of my goals in this talk is to convince you that the third point is a fact, then it explains
why the three “different subjects” are inherently related.
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Integrable Chains: spin chain

Many of you may be already familiar with the integrable chain. It has rich important physics,
but the setup is simple.

It has N-sites, each site has a vector space V and the associated Hamiltonian as

H =
N∑

i=1

(
S+,i S−,i−1 + S−,i S+,i−1

)
+ . . .

Figure: Spin chain.
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Spin Chain

Examples. Consider a spin-1/2 system: V = {+,−}.
• XX model, H =

∑N
i=1

(
S+,i S−,i−1 + S−,i S+,i−1

)
.

• XXX model, H =
∑N

i=1

(
S+,i S−,i−1 + S−,i S+,i−1 + 2Sz,i Sz,i+1

)
.

· · ·
The k spin-up configuration corresponds to the configuration of k-magnons.
We will see that these can be mapped to the supersymmetric gauge theory. Magnons map to
the vacuum states of supersymmetric gauge theory, and the interaction S+,i S−,i−1 and
S−,i S+,i−1 map to the fundamental domainwalls · · ·
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Bosonic chain

Compare to spin chain, we can also have the bosonic chain: multiple particles can locate on the
same site.

Figure: Bosonic chain.

I will only focus on the q-deformed (-phase) model in this talk, and I will propose a new wave
function (Bethe ansatz) guided by symmetries of quantum field theory.



Gr(k;N)

A brief discussion of GLSM with a concrete example.

Gauged linear sigma model for Gr(k;N) is
well-studied. See Witten ’93, Gu-Sharpe ’18 (Exact results in the holomorphic scheme). It is a
U(k) gauge theory with N fundamental fields.

I When r � 0, the semi-classical vacuum configuration is the geometry: Gr(k;N).

I When r � 0, the vacuum structure is described by a twisted effective superpotential

W̃eff = −(t + i(k − 1)π)
k∑

a=1

Σa −
∑

a

NΣa (log (Σa)− 1) .

The vacuum equations

e
∂W̃eff
∂σa = 1

give
(σa)N = q̃, q̃ = e−t−iπ(k−1), a ∈ {1, · · · , k}, σa 6= σb.

We will see the above equations are also the Bethe-ansatz equations of the N-sites XX-spin
chain.
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BPS Spectrum

The reason we mention the exact result is that it includes the BPS spectrum in the dynamics.
The BPS domainwall that fluctuates from one vacuum to another one will be useful in our story.

For projective space, or a U(1) gauge theory, it was observed first by Witten ’79 that the
fundamental domainwall, which connects two adjacent vacua, has a gauge charge 1. A
candidate of this domainwall is the IR heavy matter φ (In UV, it is a “fundamental field”.). The
mass of this domainwall is proportional to the dynamical scale ΛN = q:

Z ≈ Λ

It has a finite mass, so, unlike the bosonic theory, 2d N = (2, 2) massive theory is not confined.
More generally, we have

Z`1`2
= W |`2

−W |`1
, ` labels the vacua.

See Hannay-Hori ’97 and Hori-Vafa ’20 for abelian theories. See also Dorey ’98 about the
connection to the BPS-spectrum in Seiberg-Witten theory. For nonabelian theories, see Gu ’22.
If turning on the twisted mass, the central charge expression will be modified.
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An intermediate scale

In quantum field theory, the physics depends on scale. Now if we consider a scale

Λ� e(µ),

where e is the gauge coupling. The mass of the perturbative spectrum is proportional to the
gauge coupling e. At this scale, the physics degrees of freedom are domainwalls. We will show
that this is the theory for spin chains.



State Space

Following Witten ’82 or Hori.et.al mirror symmetry book ’2000, after some operations, we can
represent the state-space by a formal notation (Gu ’22), for example, for k=2

|−, · · · ,+,−, · · · ,−,+,−, · · · ,−〉.

This notation is not necessary for quantum field theory, however, it would be useful for
presenting the data of the spin chain.



Spin Operators

One can construct local spin operators on each site as

S+,i = λ̄+,iλ−,i , S−,i = λ̄−,iλ+,i , Sz,i =
1

2

(
λ̄+,iλ+,i − λ̄−,iλ−,i

)
.

It is readily to show that
[S+, S−] = 2Sz .

This explains why we need N = (2, 2) supersymmetry for getting a spin chain. For more general
global symmetry in gauge theory, it would have one more index for defining the local spin
operators, see Gu ’22.



Domain walls In The Spin Chain

The domain wall can be regarded as a map such as

|−, · · · ,−i−1,+i ,−i+1 · · · 〉 7→ |−, · · · ,−i−2,+i−1,−i · · · 〉

φ : 7→ Di = S−,i S+,i−1.

One can similarly define the anti-domain wall. For more general domain walls, a similar
construction applies.



Constraints From Domain walls

In our case, we have the global symmetry SU(N) in our target space. The domain walls are
charged under the center group ZN of the flavor group SU(N). So the dynamic domain walls
suggested that all of the physical state space should be neutral under the center group ZN .
Notice that, the expectation value of σ field is also charged under ZN group (also they are
charged under the axial-R symmetry as well), which can be used to construct the states.

For example, consider the k=1 case, the physical state space at the intermediate scale can be
represented as

N∑
i=1

σi | · · ·+i · · · 〉.

This is actually the state for one “magnon” in the spin chain if we replace σ with e ip , where p is
the momentum of the magnon.



Constraints From Domain walls

In our case, we have the global symmetry SU(N) in our target space. The domain walls are
charged under the center group ZN of the flavor group SU(N). So the dynamic domain walls
suggested that all of the physical state space should be neutral under the center group ZN .
Notice that, the expectation value of σ field is also charged under ZN group (also they are
charged under the axial-R symmetry as well), which can be used to construct the states.
For example, consider the k=1 case, the physical state space at the intermediate scale can be
represented as

N∑
i=1

σi | · · ·+i · · · 〉.

This is actually the state for one “magnon” in the spin chain if we replace σ with e ip , where p is
the momentum of the magnon.



Finite Symmetries: CPT

CPT-symmetries in quantum field theory can also descend to the spin chain. They act as the
following:

PS±,iP−1 = S∓,i PSz,iP−1 = −Sz,i ,

T S±,iT −1 = −S±,i T Sz,iT −1 = Sz,i ,

CS±,iC−1 = −S∓,i CSz,iC−1 = −Sz,i .

These symmetries act on the domain walls as

PDiP−1 = D̄i PDNP−1 =

(
q̃

|q̃|

)2

D̄N ,

T DiT −1 = Di T DNT −1 =

(
q̃

|q̃|

)−2

DN ,

CDiC−1 = D̄i CDNC−1 = D̄N ,

where we have used the fact that T iT −1 = −i for i2 + 1 = 0. From the above, one can observe
that P and T may be violated individually unless q̃ = ±1. However, we will see that the
scattering factor could also break the T -symmetry if it is not a pure phase factor.
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Open v.s Closed Spin Chain

The general vacuum equations look like the following:(
e ipa

)N
= q̃

∏
b 6=a

Sab.

• When the scattering factor, Sab, is a pure phase: Besides a usually closed spin chain with
q̃ = 1 defined in the literature, we claim that the anti-periodic spin chain with q̃ = −1 is also a
closed one. On the other hand, the open spin chain in this situation has q̃ 6= ±1.
• When the scattering factor is generic not a pure phase: It is always an open spin chain for any
finite q̃.
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Hamiltonian

For a closed spin chain, it is natural to propose the Hamiltonian as

H =
∑

i

Di +
∑

i

D̄i + f (Di , D̄i ),

where the factor f (Di , D̄i ) can be fixed if we require that the state spaces are eigenstates of this
Hamiltonian. We have assumed the fact that all other matter representations are a subspace of
the tensor product of fundamental matters. This is not true for general, and for a general case,
one may need to take into account the so-called higher symmetries. We will not focus on this in
this talk.

For an open spin chain, we take the (anti-)holomorphic part of the above.
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A Summary

Let us summarize what we have. Before, Nekrasov and Shatashvili found about the
correspondence between the integrable system and the gauge theory:

Y(pa) ↔ W̃eff(σa)
pa ↔ σa

k-particle sector ↔ gauge group U(k)
N-sites ↔ flavor group SU(N)

twisted boundary ↔ t = r − iθ
(in-)homogeneities ↔ twisted masses

Spin chain is not manifest in their studies.

Based on the vacuum structure and the dynamics of the domainwalls. We have shown that the
spin chain can emerge from the N = (2, 2) supersymmetric gauge theory in two steps.

I Write the ground states as the Hilbert space formula, and (isomorphic-)map them to the
magnon’s configuration in the spin chain.

I Kinetic and dynamics of magnons map to the kinetic and dynamics of domainwalls.

So the above similarities found by Nekrasov and Shatashvili between the integrable systems and
the gauge theories are just a consequence of our framework.
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Examples: Gr(k;N)

Now we focus on the simplest example: gauged linear sigma model for Gr(k;N). The vacuum
equations are

(σa)N = ΛN .

If we use the variable σ̃a = σaΛ−1, the vacuum equations reduce to

(σ̃a)N = 1.

These equations are Bethe-equations of the XX model. And we expect that the spin chain is a
closed one.

The Hamiltonian is simple:

H =
∑

i

Di +
∑

i

D̄i .

The eigenstates are k-magnons

| k〉 := Ak

∑
1≤j1<···<jk≤N

k∏
a=1

∑
W∈Sk

(
σ̂W(a)

)ja |j1, · · · , jk 〉k .

The eigenvalue is
H· | k〉 := (e1(σ) + e1(σ̄)) | k〉
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Quantum Cohomology

One might have noticed that the holomorphic part of the eigenvalue e1(σ) is the cohomology
generator of H1,1(Gr(k; N)). One may expect that all of the generators can be constructed as
the eigenvalues of the corresponding operators. It was first done by mathematicians (Postnikov
’05, C. Korff and C. Stroppel ’09) that one can construct a general elementary function:

er (D).

The eigenvalue of this is er (σ). One can further construct the Schur operators Sλ (D) that the
eigenvalues are

Sλ (σ) .

In this context, the quantum cohomology of Gr(k;N) can be reconstructed from the XX model.



Open XX model

If we start from the vacuum equations

(σa)N = ΛN .

The emergent spin chain is an open one.
All the discussions are similar to the closed one by only focusing on the (anti-)holomorphic part.



K-theoretic of XX model

One can lift gauged linear sigma models to the 3d CS-matter theories on space-time R2 × S1.
Compared to the 2d theory, one has one more parameter to label the vacua and others: the
so-called Chern-Simons levels. We only focus on the gauge Chern-Simons level kU(k). We split
it into two factors: kU(1) and kSU(k).

• If we choose (Jockers et.al, Ueda and Yoshida ’2019, Gu et.al ’20 and ’22 )

kU(1) = −
N

2
, kSU(k) = k −

N

2
,

the vacuum equations are

(1− xa)N = q̃
(xa)k∏k
b=1 xb

.

There is “interaction factor” on the right hand side

Sab = −
xa

xb
.

This factor means the magnons interacts each other. Since this factor of this case is not a pure
phase, the spin chain of this case is always an open one regardless of what the value of q̃ is.
This is because if we regard

1− xa := e ipa

The momentum pa is not real.
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phase, the spin chain of this case is always an open one regardless of what the value of q̃ is.
This is because if we regard

1− xa := e ipa

The momentum pa is not real.



State Space

One can propose the interacting state space as follows:

Ak

∑
1≤j1<···<jk≤N

∑
W∈Sk

SW(a)e
∑k

a=1 ipW(a)ja |j1 < · · · < jk 〉k ,

where Ak is an overall normalization factor, and
∑
W∈Sk

SW is a multiplication of scattering
factors Sab. One can show that the proposed state space is consistent with the symmetries.

The fundamental Hamiltonian of this system is a complex one, which was first proposed in a
slightly different context by Gorbounov and Korff ’2014:

h =
N∑
i

Di −
N∑

|i1−i2| mod N>1

Di1Di2 +
N∑

|ia−ib| mod N>1

Di1Di2Di3 + · · · .

The number of sites is N, so only finitely many terms act non-trivially, and the series therefore
terminates.
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Gr(2;N)

Let us check whether the ground state wave functions proposed in our paper for this case are
indeed the eigenstates of the Hamiltonian. To shorten the notation, we denote the ground state
as | ω〉2 =

∑
1≤j1<j2≤N a(j1, j2)|j1 < j2〉2, where

a(j1, j2) = A
(

e i(p1j1+p2j2) + S21e i(p2j1+p1j2)
)
.

The boundary condition is a(j1, j2 + N) = q · a(j2, j1), which gives

e i(p1j1+p2j2)e ip2N + S21e ip1N e i(p2j1+p1j2) = q
(

e i(p1j2+p2j1) + S21e i(p2j2+p1j1)
)
.

The vacuum equations can be read from the above as

e ip1N = qS12, e ip2N = qS21.

So it is consistent.



Gr(2;N)

To compute H | ω〉2, special care is needed when two overturned spins are sitting next to each
other. We find

H | ω〉2 =
∑

1≤j1<j2≤N

(a(j1 + 1, j2) + a(j1, j2 + 1)− a(j1 + 1, j2 + 1)) | j1 < j2〉2

−
∑

1≤j≤N

(a(j + 1, j + 1)− a(j + 1, j + 2)) | j < j + 1〉2.

In order to obey the eigenstate condition, the contact terms in the last line of the above
equation should be vanishing:

a(j + 1, j + 1)− a(j + 1, j + 2) = 0.

If we test the coefficient as a(j1, j2) = Ce i(p1j1+p2j2) + De i(p1j2+p2j1), the vanishing contact terms
all give

C

D
= −

x1

x2
.

This is certainly consistent with our scattering factor S12 in the vacuum equations. The
procedure applies to a general Grassmannian.



Geometric basis

The Hamiltonian actually has a geometrical meaning. See Buch and Mihalcea ’08. The
eigenvalue of this Hamiltonian is the first Schubert class of the Gr(k; N):

H | ω〉k = O� | ω〉k

where

O� := 1−
k∏

a=1

xa.

For example, if k=2 the factor in the above equation is

a(j1 + 1, j2) + a(j1, j2 + 1)− a(j1 + 1, j2 + 1) = (z1 + z2 − z1z2)a(j1, j2)

where the coefficient (z1 + z2 − z1z2) = 1− x1x2 (where z = 1− x) is indeed the first Schubert
class of Gr(2,N). Thus, one may naturally expect that higher Schubert classes are the
eigenvalues of the higher Hamiltonian as well. Quantum K-theory of Gr(k; N) from the
integrable model has been investigated by Gorbounov and Korff ’2014, although their
construction was based on a five-vertex model rather than a spin chain.
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Some other insights

I Seiberg duality is the P-symmetry of the associated spin chain

I Different gauge theories, for example, U(k), for different k , can be unified in a single
integrable system.

I The Yang-Baxter equation can be derived from the dynamics of BPS domain walls.

I ...



Bosonic chain

There are bosonic integrable systems.. For example, there is a q-deformed bosonic integrable
system. The previous study for wave-function was using the algebraic Bethe ansatz. From
quantum field theory, we can give a new anstatz and the q-deformed algebra will be emerged
from this new ansatz:

ψ (p1, · · · , pk ) = Ak

∑
1≤j1≤···≤jk≤n

∑
W∈Sk

SW(a)e
∑k

a=1 ipW(a)ja |j1 ≤ · · · ≤ jk 〉k .

is very similar to the coordinate Bethe ansatz discussed in the spin- 1
2

chain system except that
our case is allowed to put different bosons on the same site. These “contact”-look terms do not
merely describe the UV physics of the eigenstates, as they are relevant for IR physics. Then
using this wave function, we find a q-deformed algebra emerges from the consistency
requirement of the integrable system. This new discovery encourages us that gauge theory can
teach us something more about the integrable system.
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Conclusion

I We showed how a spin chain emerges from the two-dimensional supersymmetric gauge
theory. Domainwalls play a crucial role.

I We discussed several examples.



Thanks!


