Gravitational waves from a non-abelian dark sector coupled to axion inflation Helena Kolešová (University of Stavanger)

Joint work with Simone Biondini, Mikko Laine and Simona Procacci ArXiv: 2303.17973, 2311.03718

CMB is too homogeneous!

CMB is too homogeneous!

Inflation?

2

How were the structures in our Universe formed?

CMB is too homogeneous!

Inflation?

How were the structures in our Universe formed?

CMB is too homogeneous!

Inflation?

How were the structures in our Universe formed?

CMB is too homogeneous!

How can we learn more about events before recombination?

Inflation?

[arXiv:1008.1704]

Dark matter!

How were the structures in our Universe formed?

CMB is too homogeneous!

How can we learn more about events before recombination?

Inflation?

Credit: http://lisa.jpl.nasa.gov/gallery/lisa-waves.html

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

Outline

- 1. Model setup: Inflaton coupled to non-abelian dark sector
- 2. Gravitational waves from thermal plasma
- 3. Gravitational waves from the confinement phase transition
- 4. Dilution of gravitational wave signals due to early matter domination era

• Axion inflation coupled to non-abelian dark sector

Model setup: Example of "warm inflation"

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

[Berghaus, Graham, Kaplan: 1910.07525] [Laine, Procacci: 2102.09913] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

- Negative pressure density \Rightarrow accelerated expansion of the Universe
- Additional "friction" related to the interaction with dark gluons

Constraints on the inflaton potential from CMB observations

Dark gluons forming thermal bath already during inflation

Inflaton field during "slow roll":

Model setup: Example of a "warm inflation"

Evolution of the dark sector

[HK, Laine, Procacci: 2303.17973]

Friction due to inflaton coupling to dark sector: lattice input available for SU(3) [Moore,Tassler: 1011.1167] [Laine, Niemi, Procacci, Rummukainen: 2209.13804]

····
• •
(() $\ddot{\overline{\varphi}}$ + (3*H*+Y) 。
•
7 $\dot{\overline{\varphi}} + V_{\overline{\varphi}} \simeq 0$

.
C $\rho_D + 3H(\rho_D + p_D) \simeq \Upsilon$ $\frac{1}{7}$ $\dot{\bar{\phi}}^2$

Dark sector energy and pressure densities. SU(3) equation of state: [Giusti, Pepe: 1612.00265] [Meyer: 0905.422]

• Evolution of an SU(3) sector coupled to axion inflation studied for varying confinement scale Λ

Evolution of the dark sector

Question 2: Did the dark sector undergo a phase transition?

Both answers are important for the possible gravitational wave signal!

Question 1: What is the maximum temperature reached in the dark sector?

Credit: http://lisa.jpl.nasa.gov/gallery/lisa-waves.html

Gravitational waves from inflation I: Vacuum fluctuations of the inflaton during slow roll (= Jonas' GW) $k \text{ (Mpc}^{-1})$

- Approximately scale-invariant GW spectrum $(n_t(k) \simeq 2\epsilon \ll 1)$
- For generic (= non-Jonas) inflationary potentials: CMB constraint on tensor-toscalar ratio \Rightarrow GW signal not measurable directly by experiments like LISA

[Smith, Kamionkowski, Cooray: astro-ph/0506422]

Gravitational waves from inflation II: Thermal fluctuations in the hot plasma after reheating

- Thermal fluctuations in a plasma induce production of gravitational waves [Ghiglieri, Laine: 1504.02569] [Ghiglieri, Jackson, Laine, Zhu: 2004.11392]
- Peak frequency ~ 80 GHz
- $\Omega_{GW} h^2 \propto f^3$ at low frequencies
- Constraints from $\Delta N_{\rm eff}$ at BBN: $\Delta N_{\rm eff} \lesssim 10^{-3} \Rightarrow T_{\rm max} \lesssim 10^{17} \,\text{GeV}$

Gravitational waves from inflation II: Thermal fluctuations in the hot plasma after reheating

- Could be in principle measured directly?
- Detection of "ultra-highfrequency" GW is challenging, but new ideas are appearing!
- No known astrophysical sources of GW at MHz to GHz frequencies \Rightarrow unique opportunity to learn about BSM physics!

[Aggarwal et al.: 2011.12414]

 $\Omega_{\rm gw}^{}=$

GW from warm axion inflation

"Boltzmann domain" - elementary particle excitations can be resolved. SM contribution dominates (contribution from axion negligible)

[Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

Sensitive to maximum temperature reached

Maximum temperature of the dark sector

• Evolution of an SU(3) sector coupled to axion inflation studied for varying confinement scale Λ

$$
(m_{\rm pl} = 1.22 \times 10^{19} \,\text{GeV})
$$

Friction due to inflaton coupling to dark sector: lattice input available for SU(3) [Moore,Tassler: 1011.1167] [Laine, Niemi, Procacci, Rummukainen: 2209.13804]

····
• •
(() $\ddot{\overline{\varphi}}$ + (3*H*+Y) 。
•
7 $\dot{\overline{\varphi}} + V_{\overline{\varphi}} \simeq 0$

.
C $\rho_D + 3H(\rho_D + p_D) \simeq \Upsilon$ $\frac{1}{7}$ $\dot{\bar{\phi}}^2$

Dark sector energy and pressure densities. SU(3) equation of state: [Giusti, Pepe: 1612.00265] [Meyer: 0905.422]

Maximum temperature of the dark sector

- **Message 1: Temperatures up to** $10^{-3} m_{pl}$ **can** 10−³ *m*
- be reached
- For Λ up to 10^{-3} *m*
- **•** If Yang-Mills plasma not coupled to extra light d.o.f.
- ⇒ Enhancement of GW from thermal plasma in ET, LISA frequency range

Maximum temperature of the dark sector

Message 2: For lower Λ the dark sector heats up above T_c \Rightarrow undergoes a phase transition \Rightarrow possible further GW signal

- **Message 1: Temperatures up to** $10^{-3} m_{pl}$ **can** 10−³ *m*
- be reached
- For Λ up to 10^{-3} *m*
- **•** If Yang-Mills plasma not coupled to extra light d.o.f.
- ⇒ Enhancement of GW from thermal plasma in ET, LISA frequency range

[Hindmarsh et al.: 1504.03291]

GW from a confinement phase transition?

• Confinement phase transition for SU(3) pure Yang-Mills is of first order ⇒ possible GW signal [Schwaller:1504.07263][Caprini et al.: 1910.13125]…

GW from a confinement phase transition?

- Confinement phase transition for SU(3) pure Yang-Mills is of first order ⇒ possible GW signal [Schwaller:1504.07263][Caprini et al.: 1910.13125]…
- The signal is relatively weak due to relatively large inverse duration of the phase transition β , but still potentially measurable by future GW experiments [Huang, Reichert, Sannino, Wang: 2012.11614] [Morgante, Ramberg, Schwaller: 2210.11821]
- Open questions: Bubble wall velocity? What if there is no SM plasma (i.e., no relativistic particles) around in the time of the phase transition?

Illustration: GW signal from the confinement phase transition in pure SU(N) theories calculated within PNJL model

14

GW from a confinement phase transition?

- Confinement phase transition for SU(3) pure Yang-Mills is of first order ⇒ possible GW signal [Schwaller:1504.07263][Caprini et al.: 1910.13125]…
- The signal is relatively weak due to relatively large inverse duration of the phase transition β , but still potentially measurable by future GW experiments [Huang, Reichert, Sannino, Wang: 2012.11614] [Morgante, Ramberg, Schwaller: 2210.11821]
- Open questions: Bubble wall velocity? What if there is no SM plasma (i.e., no relativistic particles) around in the time of the phase transition?

Illustration: GW signal from the confinement phase transition in pure SU(N) theories calculated within PNJL model

Phase transition assumed to happen during radiation-dominated era!

Dilution of the gravitational wave signal: I) PT during radiation domination

 $\Omega_{{\rm gw},0}^{} h^2 =$ $\rho_{\rm gw,\star}$ *ρ* a^4_{\star} a_0^4 **0**

 $\Omega_{\rm gw,0} h^2 \simeq 1.65 \times 10^{-5}$

(earlier PT ⇔ larger $g_{s,\star}$ ⇔ mildly suppressed GW signal)

$$
\Omega_{\text{gw},0} h^2 = \frac{\rho_{\text{gw},\star}}{\rho_{\text{crit}}} \frac{a_{\star}}{a_0^4} \qquad \& \qquad s_{\text{rad}} a^3 = \text{const.}
$$
\n
$$
\bigcup_{s_{\text{rad}} = g_s \frac{2\pi^2}{45} T^3, \quad \rho_{\text{rad}} = g_e \frac{\pi^2}{30} T^4
$$
\n
$$
\Omega_{\text{gw},0} h^2 \simeq 1.65 \times 10^{-5} \frac{g_{e,\star}}{g_{s,\star}} \left(\frac{100}{g_{s,\star}}\right)^{1/3} \frac{\rho_{\text{gw},\star}}{\rho_{\text{rad},\star}}
$$
\nBetween ~1 and ~3 for any phase transition temperature (if SM only)\n
$$
\Omega_{\text{gw},0} \text{ depends only mildly on the time when PT happens}
$$

For SU(3) sector coupled to axion inflation, confinement PT may happen in an early matter-dominate era!

• Inflaton oscillations during reheating induce a matter-dominated era for $H \gtrsim \Upsilon$

• Pure Yang-Mills sector below confinement temperature T_c is also matter-like! (SM fields can be reheated only later, e.g., by the decay of the dark glueballs with rate Γ)

$$
p_{\varphi} = \frac{\dot{\bar{\varphi}}^2}{2} - V \dots \text{averages to}
$$

How does GW dilution look like if PT happens during matter-dominated era?

Generic model with early matter domination

 10^{-2}

 10^{-41}

 10^{-61}

 $\rho[m_{\rm pl}{}^4]$

$$
\dot{\rho}_{\varphi} + 3H\rho_{\varphi} = -\Upsilon \rho_{\varphi}
$$

$$
\dot{\rho}_D + 3H\rho_D = +\Upsilon \rho_{\varphi} - \Gamma \rho_D
$$

$$
\dot{\rho}_{SM} + 4H\rho_{SM} = +\Gamma \rho_D
$$

$$
\dot{\rho}_{gw} + 4H\rho_{gw} = 0
$$

- 1. **Oscillations of the inflaton field** dominating the Universe
- 2. Inflaton decays to **matterlike dark sector** (nonrelativistic particles) when *H* ∼ Υ
- 3. Dark sector decays into **SM fields** when *H* ∼ Γ
- 4. Standard radiation domination

Possible PT in the dark sector ⇒emission of GW

Dilution of the gravitational wave signal: II) PT during matter domination

 H_{\star}

Rough estimate of the maximum possible GW signal: $\rho_{\rm gw,\star}$ $\rho_{D,\star}$ ∼ *l B* l_H $\theta(l_B - l_{\text{free}}),$ *l B* l_H $\in (10^{-6}, 1)$

- $l_B \sim 1/\beta$... bubble length scale = scale of translation invariance breaking
- $l_H \sim 1/H$... Hubble length scale
- l_{free} ... mean free path = scale of thermal fluctuations \Rightarrow $l_B \gtrsim l$

$$
\Omega_{\text{gw},0} h^2 \simeq 1.65 \times 10^{-5} \frac{g_{e,r}}{g_{s,r}} \left(\frac{100}{g_{s,r}}\right)^{1/3} \frac{\rho_{\text{gw},\star}}{\rho_{D,\star}} \left(\frac{\Gamma}{H_{\star}}\right)^{2/3} \frac{\Upsilon}{H_{\star}}
$$
\n
$$
\text{Absent if} \quad \text{Absent if} \quad H_{\star} < \Gamma \quad H_{\star} < \Upsilon
$$

Implications for GW from the confinement phase transition in the SU(3) sector coupled to axion inflation

Sizeable signal only if PT happens shortly before radiation domination starts

Conclusions

- Evolution of a dark SU(3) sector coupled to axion inflation studied
	- Different qualitative behaviour depending on the dark confinement scale Λ :

- Possible gravitational wave signal in both cases, however, it might be diluted due to an early matter dominated era
- Teaser for the NPACT meeting: glueball dark matter for $\Lambda \sim 10^{-12} m_{\rm pl}$? [Biondini, HK, Procacci: in preparation]
- : $T_{\text{max}} \sim 10^{-8} m_{\text{nl}} > T_c \Rightarrow$ Phase transition
- $m_{\sf pl}$: $T_{\sf max}$ slightly below $T_c \Rightarrow$ Large temperatures achieved

$$
\left\{\begin{aligned}\n\Lambda &\lesssim 10^{-8} m_{\text{pl}} : T_{\text{max}} \sim 10^{-8} m_{\text{pl}} > T_c \Rightarrow \\
\Lambda &\gtrsim 10^{-8} m_{\text{pl}} : T_{\text{max}}\n\end{aligned}\right.
$$

Conclusions

- Evolution of a dark SU(3) sector coupled to axion inflation studied
	- Different qualitative behaviour depending on the dark confinement scale Λ :

- Possible gravitational wave signal in both cases, however, it might be diluted due to an early matter dominated era
- Teaser for the NPACT meeting: glueball dark matter for $\Lambda \sim 10^{-12} m_{\rm pl}$? [Biondini, HK, Procacci: in preparation]

$$
\left\{\begin{aligned}\n\Lambda &\lesssim 10^{-8} m_{\text{pl}} : T_{\text{max}} \sim 10^{-8} m_{\text{pl}} > T_c \Rightarrow \\
\Lambda &\gtrsim 10^{-8} m_{\text{pl}} : T_{\text{max}}\n\end{aligned}\right.
$$

Thanks for your attention!

- : $T_{\text{max}} \sim 10^{-8} m_{\text{nl}} > T_c \Rightarrow$ Phase transition
- $m_{\sf pl}$: $T_{\sf max}$ slightly below $T_c \Rightarrow$ Large temperatures achieved

Back up

Inspiration: warm inflation

- Inflaton interactions with light particles
	- \Rightarrow Friction term in the inflaton evolution equation
	- \Rightarrow Presence of a thermal bath throughout inflation

Strong regime: thermal friction dominates

Weak regime: Hubble friction dominates

[Berera, Fang: astro-ph/9501024; Berera: astro-ph/ 9509049; Berera, Gleiser, Ramos: hep-ph/9809583], review: [Kamali, Motaharfar, Ramos: 2302.02827]

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

Inspiration: warm inflation

- Inflaton interactions with light particles \Rightarrow Friction term in the inflaton evolution equation
	- \Rightarrow Presence of a thermal bath throughout inflation

Strong regime: thermal friction dominates

Weak regime: Hubble friction dominates

• Concrete realisation: warm axion inflation - coupling to non-abelian gauge fields

[Berera, Fang: astro-ph/9501024; Berera: astro-ph/ 9509049; Berera, Gleiser, Ramos: hep-ph/9809583], review: [Kamali, Motaharfar, Ramos: 2302.02827]

> [Berghaus, Graham, Kaplan: 1910.07525] [Laine, Procacci: 2102.09913] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

Inspiration: warm inflation

- Inflaton interactions with light particles \Rightarrow Friction term in the inflaton evolution equation
	- \Rightarrow Presence of a thermal bath throughout inflation

Strong regime: thermal friction dominates

Weak regime: Hubble friction dominates

• Concrete realisation: warm axion inflation - coupling to non-abelian gauge fields

⇒ (Dark) Yang-Mills sector!

[Berera, Fang: astro-ph/9501024; Berera: astro-ph/ 9509049; Berera, Gleiser, Ramos: hep-ph/9809583], review: [Kamali, Motaharfar, Ramos: 2302.02827]

> [Berghaus, Graham, Kaplan: 1910.07525] [Laine, Procacci: 2102.09913] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

Focus of this talk!

• Heating and cooling phase transitions may bring interesting GW signatures! [Buen-Abad, Chang, Hook: 2305.09712]

Benchmark parameter choice (axion inflation consistent with CMB data) [Klose, Laine, Procacci: 2201.02317]: axion mass: $m=1.09\times 10^{-6}\,m_{\rm pl}$, axion decay constant: $f_a = 1.25 m_{pl}$ initial time: $t_{\sf ref} \thicksim H^{-1}_{\sf initi}$

 $(m_{\text{pl}} = 1.22 \times 10^{19} \text{ GeV})$

$$
\Rightarrow \Upsilon \sim 10^{-23} m_{\rm pl} \ll H_{\rm slow-roll} \sim 10^{-5} m_{\rm pl}
$$

There can even be two phase transitions!

$$
f_{0,\text{peak}} \simeq 4.93 \times 10^{11} \,\text{Hz} \left(\frac{g_{e,r}}{g_{s,r}} \right)^{1/4} \left(\frac{100}{g_{s,r}} \right)^{1/12} \left(\frac{H_{\star}}{m_{\text{pl}}} \right)^{1/2}
$$

- $l_B \sim 1/\beta$... bubble length scale = scale of breaking of the spherical symmetry
- $l_H \sim 1/H$... Hubble length scale
- l_{free} ... mean free path = scale of thermal fluctuations
- $l_B \gtrsim l_{\text{free}} \Rightarrow$ upper bound on peak GW frequency when H_{\star} close to *H*

Dilution of the gravitational wave signal: II) PT during matter domination

$$
f_{0,\text{peak}} \simeq 4.93 \times 10^{11} \,\text{Hz} \left(\frac{g_{e,r}}{g_{s,r}} \right)^{1/4} \left(\frac{100}{g_{s,r}} \right)^{1/12} \left(\frac{H_{\star}}{m_{\text{pl}}} \right)^{1/2}
$$

- $l_B \sim 1/\beta$... bubble length scale = scale of breaking of the spherical symmetry
- $l_H \sim 1/H$... Hubble length scale
- l_{free} ... mean free path = scale of thermal fluctuations
- $l_B \gtrsim l_{\text{free}} \Rightarrow$ upper bound on peak GW frequency when H_{\star} close to *H*

Dilution of the gravitational wave signal: II) PT during matter domination

Ultra-high frequency GW

- about BSM physics!
- Detection is challenging, but new ideas are appearing!

Ultra-high frequency GW

- about BSM physics!
- Detection is challenging, but new ideas are appearing!

Ultra-high frequency GW

-
-

NB: abelian vs non-abelian dark sector

• Pseudoscalar inflaton coupled to gauge fields:

- Abelian case: exponential growth of one helicity mode of the vector field \Rightarrow GW, PBH, CMB nongaussianities… [Sorbo: 1101.1525; Cook, Sorbo: 1101.1525; Barnaby, Pajer, Peloso: 1110.3327; Domcke, Pieroni, Binétruy: 1603.01287…]
- Discussion about back-reaction
- Non-Abelian case: thermalisation assumption simplifies the back-reaction modeling!

$$
\mathcal{L} \supset -\frac{\alpha \varphi \, \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}}{16\pi f_a}
$$

[… Figueroa et al.: 2303.17436]

• Pseudoscalar inflaton coupled to gauge fields:

- Abelian case: exponential growth of one helicity mode of the vector field \Rightarrow GW, PBH, CMB nongaussianities… [Sorbo: 1101.1525; Cook, Sorbo: 1101.1525; Barnaby, Pajer, Peloso: 1110.3327; Domcke, Pieroni, Binétruy: 1603.01287…]
- Discussion about back-reaction [… Figueroa et al.: 2303.17436]
- Non-Abelian case: thermalisation assumption simplifies the back-reaction modeling!

$$
\mathscr{L} \supset -\frac{\alpha \varphi \, \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}}{16\pi f_a} \sqrt{\mathsf{P}^2}
$$

• Lattice input on the friction coefficient available [Moore,Tassler: 1011.1167] [Laine, Niemi, Procacci, Rummukainen: 2209.13804]

·
• •
() $\ddot{\varphi}$ + (3*H*+Y) 。
•
7 $\dot{\overline{\varphi}} + V_{\overline{\varphi}} \simeq 0$.
C $\dot{e}_r + 3H(e_r + p_r) \simeq \Upsilon$ Friction due to inflaton coupling to dark sector! Hubble rate

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

 $.25 m_{pl}$

g g

Dark radiation energy and pressure densities SU(3) EoS: [Giusti, Pepe: 1612.00265]

Working example: SU(3) case

[Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

Benchmark parameter choice (inflation consistent with CMB data) [Klose, Laine, Procacci: 2201.02317]: $m = 1.09 \times 10^{-6} m_{\text{pl}}$

$$
f_a = 1.2
$$

·· $\ddot{\varphi}$ + (3*H*+Y) $\frac{1}{7}$ $\dot{\overline{\varphi}} + V_{\overline{\varphi}} \simeq 0$

> .
C $\dot{\rho}_r + 3H(\rho_r + p_r) \simeq \Upsilon$ $\frac{1}{7}$ $\dot{\bar{\phi}}^2$

 $c_r(T)$.
T $T + 3H[\rho_r(T) + p_r(T)] \simeq \Upsilon$.
7 $\dot{\bar{\phi}}^2$

·· $\ddot{\varphi}$ + (3*H*+Y) $\frac{1}{7}$ $\dot{\overline{\varphi}} + V_{\overline{\varphi}} \simeq 0$

> .
C $\dot{\rho}_r + 3H(\rho_r + p_r) \simeq \Upsilon$ $\frac{1}{7}$ $\dot{\bar{\phi}}^2$

 $c_r(T)$.
T $T + 3H[\rho_r(T) + p_r(T)] \simeq \Upsilon$.
7 $\dot{\bar{\phi}}^2$

Entropy density of pure $SU(3)$ measured on lattice [Giusti, Pepe: 1612.00265]

·· $\ddot{\varphi}$ + (3*H*+Y)

> $\dot{\rho}_r + 3H(\rho_r + p_r) \simeq \Upsilon$ $\dot{\bar{\phi}}^2$

 $c_r(T)$.
T $T + 3H[\rho_r(T) + p_r(T)] \simeq \Upsilon$ $\dot{\bar{\phi}}^2$

Heat capacity:

·· $\ddot{\varphi}$ + (3*H*+Y)

 $\dot{\rho}_r + 3H(\rho_r + p_r) \simeq \Upsilon$ $\dot{\bar{\phi}}^2$

 $c_r(T)$ ·
/
/ T^* + 3*H*[$\rho_r(T)$ + $p_r(T)$] \simeq Υ .
7 $\dot{\bar{\phi}}^2$

Heat capacity:

$$
c_r = \partial_T e_r
$$

 c_r exponentially small well below $T_c \Rightarrow$ rapid temperature growth!

Thermalisation?

 $\Gamma_g \sim a^2 T$ Γ_{*a*}

$$
\Gamma_a \sim \Upsilon
$$

Thermalisation rate:

GW from a confinement phase transition?

• In our scenario, energy density dominated by inflaton contribution until $H\thicksim \Upsilon \Rightarrow$ "matter domination"

[[http://gwplotter.com/\]](http://gwplotter.com/%5D) $10⁻⁶$ **EPTA IPTA** 10^{-10} **SKA** V(Power Spectral Density / Hz⁻¹) 10^{-14} **LISA** 10^{-18} 10^{-22} **DECIGO BBC** 10^{-26} 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2} $10⁰$ $10²$ $10⁴$ Frequency / Hz

$$
p_{\varphi} = \frac{\dot{\bar{\varphi}}^2}{2} - V \dots \text{ averages to zero!}
$$

GW from a confinement phase transition?

• In our scenario, energy density dominated by inflaton contribution until $H\thicksim \Upsilon \Rightarrow$ "matter domination"

- Necessary ingredient to calculate the GW frequency today: SM temperature when radiation domination starts!
- If $T \equiv T_{\sf dark} \sim T_{\sf SM}$ then peak at kHz MHz frequencies expected for $\Lambda \sim 10^{-8}\, m$

$$
p_{\varphi} = \frac{\dot{\bar{\varphi}}^2}{2} - V \dots \text{ averages to zero!}
$$

Results: Maximal temperature of the dark sector

Inflaton evolution

 $\Upsilon \ll H \Rightarrow$ Inflaton dynamics unaffected by the evolution of the Yang-Mills sector!

Benchmark parameter choice (inflation consistent with CMB data) [Klose, Laine, Procacci: 2201.02317]: $m = 1.09 \times 10^{-6} m_{\rm pl}$ $f_a = 1.25 m_{pl}$ lnitial time: $t_{\sf ref} \thicksim H^{-1}_{\sf init}$

$$
\ddot{\phi} + (3H + \Upsilon)\dot{\phi} + V_{\varphi} \simeq 0
$$

$$
\dot{e}_r + 3H(e_r + p_r - TV_T) - T\dot{V}_T \simeq \Upsilon \dot{\phi}^2
$$

$$
V_0 \simeq m^2 f_a^2 \left[1 - \cos\left(\frac{\bar{\phi}}{f_a}\right)\right]
$$

 $\phi[m_{\rm pl}]$

Inflationary cosmology

FLRW metric: $ds^2 = dt^2 - a(t)^2 d\Sigma$

Einstein equations:

··*a a* $=-\frac{4\pi}{2}$ $3m_{pl}^2$ (*ρ* + 3*p*)

"Slow roll" regime: · $\dot{\overline{\varphi}}^2 \ll 2V(\overline{\varphi})$ $H^2 \simeq$ 8*π* $3m_{pl}^2$ $V(\overline{\varphi})\simeq \text{const.}$

Homogeneous scalar field:

accelerated expansion! $p + 3p < 0 \Rightarrow$

$$
\rho = \frac{\dot{\overline{\varphi}}^2}{2} + V(\rho) = \frac{\dot{\overline{\varphi}}^2}{2} - V(\rho) = \frac{\dot{\overline{\varphi}}^2}{2} + 3H\dot{\overline{\varphi}} + V'(\overline{\varphi}) =
$$

FLRW metric: $ds^2 = dt^2 - a(t)^2 d\Sigma$

Einstein equations:

··*a a* $=-\frac{4\pi}{2}$ $3m_{pl}^2$ (*ρ* + 3*p*)

"Slow roll" regime: · $\dot{\overline{\varphi}}^2 \ll 2V(\overline{\varphi})$ $H^2 \simeq$ 8*π* $3m_{pl}^2$ $V(\overline{\varphi})\simeq \text{const.}$

Homogeneous scalar field:

accelerated expansion! $p + 3p < 0 \Rightarrow$

$$
\rho = \frac{\dot{\overline{\varphi}}^2}{2} + V(\rho) = \frac{\dot{\overline{\varphi}}^2}{2} - V(\rho) = \frac{\dot{\overline{\varphi}}^2}{2} + 3H\dot{\overline{\varphi}} + V'(\overline{\varphi}) =
$$

temperature.

FLRW metric: $ds^2 = dt^2 - a(t)^2 d\Sigma$

Einstein equations:

$$
\frac{\ddot{a}}{a} = -\frac{4\pi}{3m_{pl}^2}(\rho + 3p)
$$

"Slow roll" regime: · $\dot{\overline{\varphi}}^2 \ll 2V(\overline{\varphi})$ *H*² ≃ 8*π* 3*m*² *pl* Ω shape Model fields are "reheated"?

Homogeneous scalar field:

accelerated expansion! $\rho + 3p < 0 \Rightarrow$

$$
\rho = \frac{\dot{\overline{\varphi}}^2}{2} + V(\rho) = \frac{\dot{\overline{\varphi}}^2}{2} - V(\rho)
$$

 $\ddot{\overline{\varphi}} + 3H\dot{\overline{\varphi}} + V'(\overline{\varphi}) = 0$

"Standard" cosmology

FLRW metric: $ds^2 = dt^2 - a(t)^2 d\Sigma$ Scale factor Spatial coordinates **Einstein equations**: .
C $\dot{\rho} + 3H(\rho + p) = 0$ $H^2 =$ 8*π* $3m_{pl}^2$ *ρ* **Hubble parameter:** *H* ≡ $\boldsymbol{\dot{\alpha}}$ *a a* **Radiation domination:** $p =$ *ρ* 3 \Rightarrow *a* ∝ *t*^{1/2} **Matter domination:** $p = 0 \Rightarrow a \propto t^{2/3}$ **For both cases:** $H \propto t^{-1}$

Today Life on ear **Acceleration Solar system form Star formation peak Galaxy formation era Earliest visible galaxies**

Recombination Atoms form Relic radiation decouples (CMB)

Matter domination Onset of gravitational collapse

Nucleosynthesis Light elements created - D, He, Li

Nuclear fusion begins

Quark-hadron transition Protons and neutrons formed

Electroweak transition Electromagnetic and weak nuclear forces first differentiate

Supersymmetry breaking

Axions etc.?

Grand unification transition Electroweak and strong nuclear forces differentiate **Inflation**

Quantum gravity wall Spacetime description breaks down

11 billion vears 700 million vears A00,000 years ≈ 0.01 ns -10^{-35} WWWW

14 billion years

C
C ctc.cam.ac.ukcam.ac.uk

"Standard" cosmology

Log (length scale) **Log (length scale)**

 \Rightarrow *a* \propto *t*^{1/2}

Log(time)

Causally connected regions at the time of CMB formation correspond to $O(1^{\degree})$ regions of sky today. But we see all CMB photons thermalised!

"Horizon problem"

Dilution of the gravitational wave signal: II) PT during matter domination

Sizeable suppression of the GW signal if PT happens earlier!

[Buen-Abad, Chang, Hook: 2305.09712] [Ertas, Kahlhoefer, Tasillo: 2109.06208] [Ellis, Lewicki, Vaskonen: 2007.15586]

$\Omega_{\text{gw},0} h^2 \simeq 1.65 \times 10^{-5} \frac{g_{e,r}}{g}$

10^{-21} **Toy model A**: Dark sector decaying into SM with decay rate Γ , matter-like after a phase transition that happens when $H = H_\star$, 10^{-41} $\rho_{\rm gw, \star}/\rho_{D, \star} = 10^{-2}$ $\rho[m_{\rm pl}{}^4]$.
C $\dot{\rho}_D$ + 3*H* ρ_D = $-\Gamma \rho_D$.
C $\dot{\rho}_{SM} + 4H\rho_{SM} = +\Gamma\rho_D$ 10^{-61} .
C $\dot{\rho}_{\rm gw} + 4H\rho_{\rm gw} = 0$

Dilution of the gravitational wave signal: II) PT during matter domination

 10^{-2}

 10^{-41}

 10^{-61}

 $\rho[m_{\rm pl}{}^4]$

 $\Omega_{\text{gw},0} h^2 \simeq 1.65 \times 10^{-5} \frac{g_{e,r}}{g}$

As in toy model A, but the dark sector is reheated by inflaton with equilibration rate $\Upsilon > \Gamma$

Toy model A: Dark sector decaying into SM with decay rate Γ , matter-like after a phase transition that happens when $H = H_{\star}$, $\rho_{\rm gw,\star}/\rho_{D,\star} = 10^{-2}$

Toy model B:

$$
\dot{\rho}_{\varphi} + 3H\rho_{\varphi} = -\Upsilon \rho_{\varphi}
$$

$$
\dot{\rho}_D + 3H\rho_D = +\Upsilon \rho_{\varphi} - \Gamma \rho_D
$$

$$
\dot{\rho}_{SM} + 4H\rho_{SM} = +\Gamma \rho_D
$$

$$
\dot{\rho}_{gw} + 4H\rho_{gw} = 0
$$

