Gravitational waves from a non-abelian dark sector coupled to axion inflation

Joint work with Simone Biondini, Mikko Laine and Simona Procacci ArXiv: 2303.17973, 2311.03718

Helena Kolešová (University of Stavanger)

CMB is too homogeneous!

CMB is too homogeneous!

Inflation?

CMB is too homogeneous!

Inflation?

How were the structures in our Universe formed?

2

CMB is too homogeneous!

Inflation?

How were the structures in our Universe formed?

CMB is too homogeneous!

Inflation?

How can we learn more about events before recombination?

How were the structures in our Universe formed?

[arXiv:1008.1704]

Dark matter!

2

CMB is too homogeneous!

Inflation?

How can we learn more about events before recombination?

How were the structures in our Universe formed?

Credit: http://lisa.jpl.nasa.gov/gallery/lisa-waves.html

- 1. Model setup: Inflaton coupled to non-abelian dark sector
- 2. Gravitational waves from thermal plasma
- 3. Gravitational waves from the confinement phase transition
- 4. Dilution of gravitational wave signals due to early matter domination era

Outline

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

Model setup: Example of "warm inflation"

Axion inflation coupled to non-abelian dark sector

[Berghaus, Graham, Kaplan: 1910.07525] [Laine, Procacci: 2102.09913] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

> Dark gluons forming thermal bath already during inflation

Inflaton field during "slow roll":

- Negative pressure density \Rightarrow accelerated expansion of the Universe
- Additional "friction" related to the interaction with dark gluons

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

Constraints on the inflaton potential from CMB observations

Model setup: Example of a "warm inflation"

Evolution of the dark sector

Evolution of an SU(3) sector coupled to axion inflation studied for varying confinement scale Λ

[HK, Laine, Procacci: 2303.17973]

Friction due to inflaton coupling to dark sector: lattice input available for SU(3) [Moore, Tassler: 1011.1167] [Laine, Niemi, Procacci, Rummukainen: 2209.13804]

 $\ddot{\bar{\varphi}} + (3H + \Upsilon)\dot{\bar{\varphi}} + V_{\varphi} \simeq 0$

 $\dot{\rho}_D + 3H(\rho_D + p_D) \simeq \Upsilon \dot{\bar{\phi}}^2$

Dark sector energy and pressure densities. SU(3) equation of state: [Giusti, Pepe: 1612.00265] [Meyer: 0905.422]

Evolution of the dark sector

Question 1: What is the maximum temperature reached in the dark sector?

Question 2: Did the dark sector undergo a phase transition?

Both answers are important for the possible gravitational wave signal!

Credit: http://lisa.jpl.nasa.gov/gallery/lisa-waves.html

Gravitational waves from inflation I: Vacuum fluctuations of the inflaton during slow roll (= Jonas' GW) $k (Mpc^{-1})$

- Approximately scale-invariant GW spectrum $(n_t(k) \simeq 2\epsilon \ll 1)$
- For generic (= non-Jonas) inflationary potentials: CMB constraint on tensor-toscalar ratio ⇒ GW signal not measurable directly by experiments like LISA

[Smith, Kamionkowski, Cooray: astro-ph/0506422]

Gravitational waves from inflation II: Thermal fluctuations in the hot plasma after reheating

- Thermal fluctuations in a plasma induce production of gravitational waves [Ghiglieri, Laine: 1504.02569] [Ghiglieri, Jackson, Laine, Zhu: 2004.11392]
- Peak frequency ~ 80 GHz
- $\Omega_{GW}h^2 \propto f^3$ at low frequencies
- Constraints from $\Delta N_{\rm eff}$ at BBN: $\Delta N_{\rm eff} \lesssim 10^{-3} \Rightarrow T_{\rm max} \lesssim 10^{17} \,{\rm GeV}$

Gravitational waves from inflation II: Thermal fluctuations in the hot plasma after reheating

- Could be in principle measured directly?
- Detection of "ultra-highlacksquarefrequency" GW is challenging, but new ideas are appearing!
- No known astrophysical sources of GW at MHz to GHz frequencies \Rightarrow unique opportunity to learn about BSM physics!

[Aggarwal et al.: 2011.12414]

GW from warm axion inflation

[Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

"Boltzmann domain" - elementary particle excitations can be resolved. SM contribution dominates (contribution from axion negligible)

Sensitive to maximum temperature reached

Maximum temperature of the dark sector

 $(m_{\rm pl} = 1.22 \times 10^{19} \, {\rm GeV})$

 Evolution of an SU(3) sector coupled to axion inflation studied for varying confinement scale Λ

> Friction due to inflaton coupling to dark sector: lattice input available for SU(3) [Moore, Tassler: 1011.1167] [Laine, Niemi, Procacci, Rummukainen: 2209.13804]

 $\ddot{\bar{\varphi}} + (3H+\Upsilon)\dot{\bar{\varphi}} + V_{\varphi} \simeq 0$ $\dot{\rho}_D + 3H(\rho_D + p_D) \simeq \Upsilon \dot{\bar{\varphi}}^2$

Dark sector energy and pressure densities. SU(3) equation of state: [Giusti, Pepe: 1612.00265] [Meyer: 0905.422]

Maximum temperature of the dark sector

- **Message 1**: Temperatures up to $10^{-3} m_{pl}$ can
- be reached
- For Λ up to $10^{-3} m_{\rm pl}$
- If Yang-Mills plasma not coupled to extra light d.o.f.
- ⇒ Enhancement of GW from thermal plasma in ET, LISA frequency range

Maximum temperature of the dark sector

- **Message 1**: Temperatures up to $10^{-3} m_{pl}$ can
- be reached
- For Λ up to $10^{-3} m_{\rm pl}$
- If Yang-Mills plasma not coupled to extra light d.o.f.
- ⇒ Enhancement of GW from thermal plasma in ET, LISA frequency range

Message 2: For lower Λ the dark sector heats up above $T_c \Rightarrow$ undergoes a phase transition \Rightarrow possible further GW signal

 Confinement phase transition for SU(3) pure Yang-Mills is of first order \Rightarrow possible GW signal [Schwaller:1504.07263][Caprini et al.: 1910.13125]...

[Hindmarsh et al.: 1504.03291]

- Confinement phase transition for SU(3) pure Yang-Mills is of first order \Rightarrow possible GW signal [Schwaller:1504.07263][Caprini et al.: 1910.13125]...
- The signal is relatively weak due to relatively large inverse duration of the phase transition β , but still potentially measurable by future GW experiments [Huang, Reichert, Sannino, Wang: 2012.11614] [Morgante, Ramberg, Schwaller: 2210.11821]
- Open questions: Bubble wall velocity? What if there is no SM plasma (i.e., no relativistic particles) around in the time of the phase transition?

Illustration: GW signal from the confinement phase transition in pure SU(N) theories calculated within PNJL model

14

- Confinement phase transition for SU(3) pure Yang-Mills is of first order \Rightarrow possible GW signal [Schwaller:1504.07263][Caprini et al.: 1910.13125]...
- The signal is relatively weak due to relatively large inverse duration of the phase transition β , but still potentially measurable by future GW experiments [Huang, Reichert, Sannino, Wang: 2012.11614] [Morgante, Ramberg, Schwaller: 2210.11821]
- Open questions: Bubble wall velocity? What if there is no SM plasma (i.e., no relativistic particles) around in the time of the phase transition?

Illustration: GW signal from the confinement phase transition in pure SU(N) theories calculated within PNJL model

Phase transition assumed to happen during radiation-dominated era!

Dilution of the gravitational wave signal: I) PT during radiation domination

 $\Omega_{gw,0} h^2 = \frac{\rho_{gw,\star}}{\rho_{crit}} \frac{a_{\star}^4}{a_0^4}$

 $\Omega_{\rm gw,0} h^2 \simeq 1.65 \times 10$

 $\Omega_{gw,0}$ depends only mildly on the time when PT happens (earlier PT \Leftrightarrow larger $g_{s,\star}$ \Leftrightarrow mildly suppressed GW signal)

&
$$s_{rad} a^3 = const.$$

$$\iint s_{rad} = g_s \frac{2\pi^2}{45} T^3, \quad \rho_{rad} = g_e \frac{\pi^2}{30} T^4$$

$$0^{-5} \frac{g_{e,\star}}{g_{s,\star}} \left(\frac{100}{g_{s,\star}}\right)^{1/3} \frac{\rho_{gw,\star}}{\rho_{rad,\star}}$$
Between ~1 and ~3 for any phase transition temperature (if SM only)

ildly on the time when PT happens

For SU(3) sector coupled to axion inflation, confinement PT may happen in an early matter-dominate era!

 Inflaton oscillations during reheating induce a matter-dominated era for $H \gtrsim \Upsilon$

$$p_{\varphi} = \frac{\dot{\bar{\varphi}}^2}{2} - V \dots \text{ averages to}$$

 Pure Yang-Mills sector below confinement temperature T_c is also matter-like! (SM fields can be reheated only later, e.g., by the decay of the dark glueballs with rate Γ)

How does GW dilution look like if PT happens during matter-dominated era?

Generic model with early matter domination

10-2

 10^{-41}

10⁻⁶¹

 $\rho[m_{\rm pl}^4]$

- Oscillations of the inflaton field dominating the Universe
- 2. Inflaton decays to matterlike dark sector (nonrelativistic particles) when $H \sim \Upsilon$
- 3. Dark sector decays into **SM fields** when $H \sim \Gamma$
- 4. Standard radiation domination

Possible PT in the dark sector \Rightarrow emission of GW

$$\begin{split} \dot{\rho}_{\varphi} + 3H\rho_{\varphi} &= -\Upsilon\rho_{\varphi} \\ \dot{\rho}_{D} + 3H\rho_{D} &= +\Upsilon\rho_{\varphi} - \Gamma\rho_{D} \\ \dot{\rho}_{SM} + 4H\rho_{SM} &= +\Gamma\rho_{D} \\ \dot{\rho}_{gw} + 4H\rho_{gw} &= 0 \end{split}$$

Dilution of the gravitational wave signal: II) PT during matter domination

$$\Omega_{gw,0} h^2 \simeq 1.65 \times 10^{-5} \frac{g_{e,r}}{g_{s,r}} \left(\frac{100}{g_{s,r}}\right)^{1/3} \frac{\rho_{gw,\star}}{\rho_{D,\star}} \left(\frac{\Gamma}{H_{\star}}\right)^{2/3}$$
Absent if $H_{\star} < \Gamma$

Rough estimate of the maximum possible GW signal: $\frac{\rho_{\text{gw},\star}}{\rho_{D,\star}} \sim \frac{l_B}{l_H} \theta(l_B - l_{\text{free}}), \qquad \frac{l_B}{l_H} \in (10^{-6}, 1)$

- $l_B \sim 1/\beta$... bubble length scale = scale of translation invariance breaking
- $l_H \sim 1/H$... Hubble length scale
- l_{free} ... mean free path = scale of thermal fluctuations \Rightarrow $l_B \gtrsim l_{\rm free}$

 $(m_{\rm pl} = 1.22 \times 10^{19} \, {\rm GeV})$

Absent if $H_{\star} < \Upsilon$

 H_{\star}

Implications for GW from the confinement phase transition in the SU(3) sector coupled to axion inflation

Sizeable signal only if PT happens shortly before radiation domination starts

Conclusions

- Evolution of a dark SU(3) sector coupled to axion inflation studied
 - Different qualitative behaviour depending on the dark confinement scale Λ :

$$\Lambda \lesssim 10^{-8} m_{\rm pl} : T_{\rm max} \sim 10^{-8} m_{\rm pl} >$$

$$\Lambda \gtrsim 10^{-8} m_{\rm pl} : T_{\rm max} \text{ slightly below}$$

- Possible gravitational wave signal in both cases, however, it might be diluted due to an early matter dominated era
- Teaser for the NPACT meeting: glueball dark matter for $\Lambda \sim 10^{-12} m_{\rm pl}$? [Biondini, HK, Procacci: in preparation]

- > $T_c \Rightarrow$ Phase transition
- $T_c \Rightarrow$ Large temperatures achieved

Conclusions

- Evolution of a dark SU(3) sector coupled to axion inflation studied
 - Different qualitative behaviour depending on the dark confinement scale Λ :

$$\Lambda \lesssim 10^{-8} m_{\rm pl} : T_{\rm max} \sim 10^{-8} m_{\rm pl} >$$

$$\Lambda \gtrsim 10^{-8} m_{\rm pl} : T_{\rm max} \text{ slightly below}$$

- Possible gravitational wave signal in both cases, however, it might be diluted due to an early matter dominated era
- Teaser for the NPACT meeting: glueball dark matter for $\Lambda \sim 10^{-12} m_{\rm pl}$? [Biondini, HK, Procacci: in preparation]

Thanks for your attention!

- > $T_c \Rightarrow$ Phase transition
- $T_c \Rightarrow$ Large temperatures achieved

Back up

- Inflaton interactions with light particles \Rightarrow Friction term in the inflaton evolution equation
 - \Rightarrow Presence of a thermal bath throughout inflation

[Berera, Fang: astro-ph/9501024; Berera: astro-ph/ 9509049; Berera, Gleiser, Ramos: hep-ph/9809583], review: [Kamali, Motaharfar, Ramos: 2302.02827]

Strong regime: thermal friction dominates

Weak regime: Hubble friction dominates

Inspiration: warm inflation

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

- Inflaton interactions with light particles \Rightarrow Friction term in the inflaton evolution equation
 - \Rightarrow Presence of a thermal bath throughout inflation

[Berera, Fang: astro-ph/9501024; Berera: astro-ph/ 9509049; Berera, Gleiser, Ramos: hep-ph/9809583], review: [Kamali, Motaharfar, Ramos: 2302.02827]

Strong regime: thermal friction dominates

Weak regime: Hubble friction dominates

• Concrete realisation: warm axion inflation - coupling to non-abelian gauge fields

Inspiration: warm inflation

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

[Berghaus, Graham, Kaplan: 1910.07525] [Laine, Procacci: 2102.09913] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

- Inflaton interactions with light particles \Rightarrow Friction term in the inflaton evolution equation
 - \Rightarrow Presence of a thermal bath throughout inflation

[Berera, Fang: astro-ph/9501024; Berera: astro-ph/ 9509049; Berera, Gleiser, Ramos: hep-ph/9809583], review: [Kamali, Motaharfar, Ramos: 2302.02827]

Strong regime: thermal friction dominates

Weak regime: Hubble friction dominates

 Concrete realisation: warm axion inflation - coupling to non-abelian gauge fields

 \Rightarrow (Dark) Yang-Mills sector!

Inspiration: warm inflation

[Berghaus, Graham, Kaplan: 1910.07525] [Laine, Procacci: 2102.09913] [Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

Focus of this talk!

There can even be two phase transitions!

Benchmark parameter choice (axion inflation consistent with CMB data) [Klose, Laine, Procacci: 2201.02317]: axion mass: $m = 1.09 \times 10^{-6} m_{\rm pl}$, axion decay constant: $f_a = 1.25 m_{pl}$, initial time: $t_{\rm ref} \sim H_{\rm initial}^{-1}$

$$\Rightarrow \Upsilon \sim 10^{-23} m_{\rm pl} \ll H_{\rm slow-roll} \sim 10^{-5} m_{\rm pl}$$

 Heating and cooling phase transitions may bring interesting GW signatures! [Buen-Abad, Chang, Hook: 2305.09712]

 $(m_{\rm pl} = 1.22 \times 10^{19} \, {\rm GeV})$

Dilution of the gravitational wave signal: II) PT during matter domination

$$f_{0,\text{peak}} \simeq 4.93 \times 10^{11} \,\text{Hz} \, \left(\frac{g_{e,r}}{g_{s,r}}\right)^{1/4} \left(\frac{100}{g_{s,r}}\right)^{1/12} \, \left(\frac{H_{\star}}{m_{\text{pl}}}\right)^{1/2}$$

- $l_B \sim 1/\beta$... bubble length scale = scale of breaking of the spherical symmetry
- $l_H \sim 1/H$... Hubble length scale
- l_{free} ... mean free path = scale of thermal fluctuations
- + $l_B\gtrsim l_{\rm free}$ \Rightarrow upper bound on peak GW frequency when H_{\star} close to $H_{\rm max}$

Dilution of the gravitational wave signal: II) PT during matter domination

$$f_{0,\text{peak}} \simeq 4.93 \times 10^{11} \,\text{Hz} \, \left(\frac{g_{e,r}}{g_{s,r}}\right)^{1/4} \left(\frac{100}{g_{s,r}}\right)^{1/12} \, \left(\frac{H_{\star}}{m_{\text{pl}}}\right)^{1/2}$$

- $l_B \sim 1/\beta$... bubble length scale = scale of breaking of the spherical symmetry
- $l_H \sim 1/H$... Hubble length scale
- l_{free} ... mean free path = scale of thermal fluctuations
- + $l_B\gtrsim l_{\rm free}$ \Rightarrow upper bound on peak GW frequency when H_{\star} close to $H_{\rm max}$

Ultra-high frequency GW

- \bullet about BSM physics!
- Detection is challenging, but new ideas are appearing! \bullet

Ultra-high frequency GW

- about BSM physics!
- Detection is challenging, but new ideas are appearing!

Ultra-high frequency GW

NB: abelian vs non-abelian dark sector

• Pseudoscalar inflaton coupled to gauge fields:

$$\mathscr{L} \supset -\frac{\alpha \,\varphi \,\epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}}{16\pi f_a}$$

- Abelian case: exponential growth of one helicity mode of the vector field \Rightarrow GW, PBH, CMB nongaussianities... [Sorbo: 1101.1525; Cook, Sorbo: 1101.1525; Barnaby, Pajer, Peloso: 1110.3327; Domcke, Pieroni, Binétruy: 1603.01287...]
- Discussion about back-reaction [... Figueroa et al.: 2303.17436] ${ \bullet }$
- Non-Abelian case: thermalisation assumption lacksquaresimplifies the back-reaction modeling!

26

• Pseudoscalar inflaton coupled to gauge fields:

$$\mathscr{L} \supset -\frac{\alpha \,\varphi \,\epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}}{16\pi f_a}$$

- Abelian case: exponential growth of one helicity mode of the vector field \Rightarrow GW, PBH, CMB nongaussianities... [Sorbo: 1101.1525; Cook, Sorbo: 1101.1525; Barnaby, Pajer, Peloso: 1110.3327; Domcke, Pieroni, Binétruy: 1603.01287...]
- Discussion about back-reaction [... Figueroa et al.: 2303.17436] ${ \bullet }$
- Non-Abelian case: thermalisation assumption \bullet simplifies the back-reaction modeling!

Working example: SU(3) case

[Klose, Laine, Procacci: 2201.02317] [Klose, Laine, Procacci: 2210.11710]

Lattice input on the friction coefficient available [Moore, Tassler: 1011.1167] [Laine, Niemi, Procacci, Rummukainen: 2209.13804]

Benchmark parameter choice (inflation consistent with CMB data) [Klose, Laine, Procacci: 2201.02317]: $m = 1.09 \times 10^{-6} m_{\rm pl}$

$$f_a = 1.2$$

Credit: João G. Rosa/University of Aveiro; ESA and the Planck collaboration

```
.25\,m_{\rm pl}
```

Friction due to inflaton Hubble rate coupling to dark sector! $\ddot{\phi} + (3H+\Upsilon)\dot{\phi} + V_{\varphi} \simeq 0$ $\dot{e}_r + 3H(e_r + p_r) \simeq \Upsilon \dot{\phi}^2$

Dark radiation energy and pressure densities SU(3) EoS: [Giusti, Pepe: 1612.00265]

 $\ddot{\bar{\varphi}} + (3H + \Upsilon)\dot{\bar{\varphi}} + V_{\varphi} \simeq 0$

 $\dot{\rho}_r + 3H(\rho_r + p_r) \simeq \Upsilon \dot{\bar{\phi}}^2$

 $c_r(T) \dot{T} + 3H[\rho_r(T) + p_r(T)] \simeq \Upsilon \dot{\bar{\phi}}^2$

 $\ddot{\bar{\varphi}} + (3H + \Upsilon)\dot{\bar{\varphi}} + V_{\varphi} \simeq 0$

 $\dot{\rho}_r + 3H(\rho_r + p_r) \simeq \Upsilon \dot{\bar{\phi}}^2$

 $c_r(T) \dot{T} + 3H[\rho_r(T) + p_r(T)] \simeq \Upsilon \dot{\bar{\phi}}^2$

Entropy density of pure SU(3) measured on lattice [Giusti, Pepe: 1612.00265]

 $\ddot{\bar{\varphi}} + (3H + \Upsilon)\dot{\bar{\varphi}} + V_{\varphi} \simeq 0$

 $c_r(T) \dot{T} + 3H[\rho_r(T) + p_r(T)] \simeq \Upsilon \dot{\bar{\phi}}^2$

Heat capacity:

$\ddot{\bar{\varphi}} + (3H + \Upsilon)\dot{\bar{\varphi}} + V_{\omega} \simeq 0$

 $c_r(T)\dot{T} + 3H[\rho_r(T) + p_r(T)] \simeq \Upsilon \dot{\bar{\phi}}^2$

Heat capacity:

$$c_r = \partial_T e_r$$

 C_r exponentially small well below $T_c \Rightarrow$ rapid temperature growth!

Thermalisation?

 $\Gamma_g \sim \alpha^2 T$

Thermalisation rate:

$$\Gamma_a \sim \Upsilon$$

• In our scenario, energy density dominated by inflaton contribution until $H \sim \Upsilon \Rightarrow$ "matter" domination"

$$p_{\varphi} = \frac{\dot{\bar{\varphi}}^2}{2} - V \dots$$
 averages to zer

[http://gwplotter.com/] 10-EPTA **10** -10 IPTA SKA V(Power Spectral Density / Hz⁻¹) **10** ⁻¹⁴ LISA 10 ⁻¹⁸ 10 ⁻²² DECIGO BBC 10 ⁻²⁶ 10⁻¹⁰ 10-8 10⁻⁶ 10-4 10² 10⁴ 10⁻² 10⁰ Frequency / Hz

O!

• In our scenario, energy density dominated by inflaton contribution until $H \sim \Upsilon \Rightarrow$ "matter" domination"

$$p_{\varphi} = \frac{\dot{\bar{\varphi}}^2}{2} - V \dots$$
 averages to zer

- Necessary ingredient to calculate the GW frequency today: SM temperature when radiation domination starts!
- If $T \equiv T_{\rm dark} \sim T_{\rm SM}$ then peak at kHz MHz frequencies expected for $\Lambda \sim 10^{-8} \, m_{\rm pl}$

30

Results: Maximal temperature of the dark sector

$$\ddot{\phi} + (3H+\Upsilon)\dot{\phi} + V_{\phi} \simeq 0$$
$$\dot{e}_r + 3H(e_r + p_r - TV_T) - T\dot{V}_T \simeq \Upsilon\dot{\phi}^2$$
$$V_0 \simeq m^2 f_a^2 \left[1 - \cos\left(\frac{\bar{\phi}}{f_a}\right)\right]$$

Benchmark parameter choice (inflation consistent with CMB data) [Klose, Laine, Procacci: 2201.02317]: $m = 1.09 \times 10^{-6} m_{\rm pl}$ $f_a = 1.25 \, m_{\rm pl}$ Initial time: $t_{\rm ref} \sim H_{\rm initial}^{-1}$

Inflaton evolution

 $\Upsilon \ll H \Rightarrow$ Inflaton dynamics unaffected by the evolution of the Yang-Mills sector!

φ[m_{pl}]

Inflationary cosmology

FLRW metric: $ds^{2} = dt^{2} - a(t)^{2}d\Sigma$

Einstein equations:

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3m_{pl}^2}(\rho + 3p)$$

 $\rho + 3p < 0 \Rightarrow$ accelerated expansion!

Homogeneous scalar field:

$$\rho = \frac{\overline{\phi}^2}{2} + V(2)$$

$$p = \frac{\overline{\phi}^2}{2} - V(2)$$

$$\overline{\phi} + 3H\overline{\phi} + V'(\overline{\phi}) = 0$$

"Slow roll" regime: $\overline{\phi}^2 \ll 2V(\overline{\phi})$ $H^2 \simeq \frac{8\pi}{3m_{pl}^2}V(\overline{\phi}) \simeq \text{const.}$

FLRW metric: $ds^2 = dt^2 - a(t)^2 d\Sigma$

Einstein equations:

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3m_{pl}^2}(\rho + 3p)$$

 $\rho + 3p < 0 \Rightarrow$ accelerated expansion! **Homogeneous scalar** field:

$$\rho = \frac{\overline{\phi}^2}{2} + V(2)$$

$$p = \frac{\overline{\phi}^2}{2} - V(2)$$

$$\overline{\phi} + 3H\overline{\phi} + V'(\overline{\phi}) = 0$$

"Slow roll" regime: $\overline{\varphi}^2 \ll 2V(\overline{\varphi})$ $H^2 \simeq \frac{8\pi}{3m_{pl}^2} V(\overline{\varphi}) \simeq \text{const.}$

NB: Quantum fluctuations of the inflaton field also give rise to fluctuations in CMB temperature.

FLRW metric: $ds^2 = dt^2 - a(t)^2 d\Sigma$

Einstein equations:

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3m_{pl}^2}(\rho + 3p)$$

 $\rho + 3p < 0 \Rightarrow$ accelerated expansion! **Homogeneous scalar** field:

$$\rho = \frac{\overline{\phi}^2}{2} + V($$

$$p = \frac{\overline{\phi}^2}{2} - V($$

 $\ddot{\overline{\varphi}} + 3H\dot{\overline{\varphi}} + V'(\overline{\varphi}) = 0$

Model fields are "reheated"?

"Standard" cosmology

$$ds^2 = dt^2 - a(t)^2 d\Sigma$$

Scale factor Spatial coordinates

Einstein equations:

$$\dot{\rho} + 3H(\rho + p) = 0$$
$$H^2 = \frac{8\pi}{3m_{pl}^2}\rho$$

Hubble parameter: $H \equiv$ a

Radiation domination:

 $p = \frac{\rho}{2} \Rightarrow a \propto t^{1/2}$

 $p = 0 \Rightarrow a \propto t^{2/3}$

For both cases: $H \propto t^{-1}$

Matter domination:

Today Life on ear Acceleration Dark energy dominate Solar system form Star formation peak Galaxy formation era Earliest visible galaxies

Recombination Atoms form Relic radiation decouples (CMB

Matter domination Onset of gravitational collapse

Nucleosynthesis Light elements created - D, He, Li **Nuclear fusion begins**

Quark-hadron transition

Protons and neutrons formed

Electroweak transition Electromagnetic and weak nuclear forces first differentiate

Supersymmetry breaking

Axions etc.?

Grand unification transition Electroweak and strong nuclear forces differentiate Inflation

Quantum gravity wall Spacetime description breaks down

11 billion years 700 million vears 400,000 years 5.000 vears - 0.01 ns

14 billion years

CtC cam.ac.uk

"Standard" cosmology

Log (length scale)

Log(time)

Causally connected regions at the time of CMB formation correspond to O(1°) regions of sky today. But we see all CMB photons thermalised!

"Horizon problem"

Dilution of the gravitational wave signal: **II) PT during matter domination**

[Buen-Abad, Chang, Hook: 2305.09712] [Ertas, Kahlhoefer, Tasillo: 2109.06208] [Ellis, Lewicki, Vaskonen: 2007.15586]

10-2

Toy model A: Dark sector decaying into SM with decay rate Γ , matter-like after a phase transition that happens when $H = H_{\star}$, $\rho_{\rm gw,\star} / \rho_{D,\star} = 10^{-2}$ ρ[m_{pl}⁴]

$$\dot{\rho}_{D} + 3H\rho_{D} = -\Gamma\rho_{D}$$
$$\dot{\rho}_{SM} + 4H\rho_{SM} = +\Gamma\rho_{D}$$
$$\dot{\rho}_{gw} + 4H\rho_{gw} = 0$$

Sizeable suppression of the GW signal if PT happens earlier!

Dilution of the gravitational wave signal: **II) PT during matter domination**

10-2

 10^{-41}

 $\rho[m_{\rm pl}^4]$

Toy model A: Dark sector decaying into SM with decay rate Γ , matter-like after a phase transition that happens when $H = H_{\star}$, $\rho_{\rm gw,\star} / \rho_{D,\star} = 10^{-2}$

Toy model B:

As in toy model A, but the dark sector is reheated by inflaton with equilibration rate $\Upsilon > \Gamma$

$$\begin{split} \dot{\rho}_{\varphi} + 3H\rho_{\varphi} &= -\Upsilon\rho_{\varphi} \\ \dot{\rho}_{D} + 3H\rho_{D} &= +\Upsilon\rho_{\varphi} - \Gamma\rho_{D} \\ \dot{\rho}_{SM} + 4H\rho_{SM} &= +\Gamma\rho_{D} \\ \dot{\rho}_{gw} + 4H\rho_{gw} &= 0 \end{split}$$

