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Why Study Interfacial Instabilities?

Interfacial instabilities occur in many multiphase 
flow systems, especially in porous media and 
confined geometries.
• Classic example

• Saffman-Taylor instability: viscous fingering when a less 
viscous fluid displaces a more viscous one.

• These instabilities can drastically reduce 
displacement efficiency, critical in oil recovery, 
groundwater remediation, and microfluidics.

• Understanding and predicting interface growth is 
essential to improve flow control.
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Beyond Newtonian Fluids: Added Complexity

• Newtonian fluids ➔ Constant viscosity, well-understood
• Classical theory ➔ well predicted onset of fingering 
• CFD ➔ resolve full fingering patterns

• Shear-thinning fluids ➔ more complex interface dynamics, harder to predict
• Theoretical power-law fluids: 

• Mora & Manna’s [1] criteria ➔ linear regime
• CFD ➔ onset of instability & detailed patterns

• Realistic fluids with polymers: 
• Adding polymer: Shear-dependent viscosity (shear-thinning/thickening), develop normal stresses, elastic 

deformation (viscoelasticity)
• Viscosity field varies spatially 
➔ Power-law model does not capture these effects, very limited comparison 
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Research Objectives
• Quantify the growth rate of perturbations in two-fluid displacement inside a 

Hele-Shaw cell.

• Analyze both Newtonian and power-law (shear-thinning) fluid systems.

• Evaluate stability criteria using a developed 2D model in OpenFOAM

• 2D CFD simulations vs. linear stability theory :
• Friction pressure gradients
• Influence of interfacial tension 
• The effect of rheological parameters (k, n from power-law fluids)
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Under what conditions do perturbations grow, decay, or stabilize?
How accurately can we predict them with the 2D model?



Theoretical Framework: From Newtonian to Power-Law

• Mora & Manna [1] ’s general linear stability:

• For Newtonian Fluids: 

Non-Dimensional

• M: Perturbation growth rate
• 𝐺𝑖 : Unperturbed friction pressure gradient
•  γ : interfacial tension
•  k : wavenumber

The classic growth rate depends on 
viscosity contrast & interfacial tension
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Dimensionless Growth Rate for Power-Law Fluids

• For power-law fluids:

• M*: non-dimensional perturbation growth rate
• λ = 𝐺1/𝐺2: ratio of friction pressure gradients
• Ca = 𝐺2ℎ2/𝛾 : capillary number
• 𝑛𝑖  : flow behavior index (shear-thinning <1)
• k : wavenumber
• γ : interfacial tension

• λ governs balance between destabilizing and stabilizing forces
• Capillary force suppress high-wave number growth
• Rheology enters through n1 and n2: controls denominator (growth damping)
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Fast and Robust 2D Simulation Framework:
Gap-Averaged Model for Hele-Shaw flow of power-law and Newtonian fluids

• 2D gap-averaged model [2] developed and implemented in OpenFOAM
• Hele-Shaw approximation: 

• Flow confined to the plane (no velocity component in the gap direction)
• Fully developed velocity profile in the gap for power-law fluids

• Momentum equation integrated over the gap width to reduce dimensionality 
• Captures essential physics at ~200x less cost than 3D models

• Governing equations:
• Gap-averaged continuity and momentum
• Shear-rate approximate by its gap-wise contribution

• Interface tracked using Volume of Fluid method
• Simulations run for 20 s, data sampled every 1 s

• 0.05 m x 0.2 m x 0.001 m
• 128 x 512 cells, 1 cell in gap
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Interfacial Evolution from (2D vs 3D vs Experiment [2])

Oil displacing Xanthan gum at different flow rate

Oil displacing Polyacrylamide at different flow rate Polyacrylamide displacing Oil at different flow rate

Xanthan gum displacing Oil at different flow rate
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Controlled Onset of Viscous Fingering

• Controlled Initial interface given a single sinusoidal perturbation

𝒚 𝒙 = 𝑨𝒔𝒊𝒏 𝒌𝒙 + 𝒚𝟎

• To ensure reproducible, well-defined growth conditions
• Avoids random perturbations from numerical noise
• Finger length tracked overtime ➔ fitted to an exponential curve to extract 

growth rate

• Amplitude A = 0.004 m
• Wavenumber k = 2π/0.05𝑚−1 
• Offset 𝑦0 = 0.002 𝑚 
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Fluids, Parameters, and Simulation Setup

Newtonian Cases
• Displacing fluid: water-based 

solution (density 998 kg/m³)
• Displaced fluid: mineral oil 

(viscosity 0.133 Pa·s, density 
887.6 kg/m³)

• Imposed velocity varied
• Interfacial tension: varied 

from 10−10 to 0.09 mN/m

Power-Law Cases
• Displacing & displaced fluid: either 

mineral oil or power-law fluid
• Real power-law fluids: Xanthan gum & 

polyacrylamide solutions
• Rheological parameters k and n from 

experiments in literature, → e.g., Varges 
et al.[3], Amaratunga et al.[4]

• Broad parametric ranges explored:
• Friction pressure gradient: 

𝜆=𝐺1/𝐺2∈[0.42,12.87]
• Capillary number: Ca∈[0.0125,1.071]
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Newtonian Case: 
2D Simulation vs. 3D DNS & Theory

• Validated against results from Lu et 
al. (2020) [5]:

→ 3D simulations & linear stability theory

• 3 benchmark cases with:
• Negative, zero, and positive growth 

rates.

• 2D simulation results match:
• Theoretical predictions
• 3D DNS evolution of finger length 

over time

11.06.2025 11

[5] Daihui Lu, Federico Municchi, and Ivan C Christov. “Computational 
analysis of interfacial dynamics in angled Hele-Shaw cells: instability 
regimes”. Transport in Porous Media 131.3 (2020), pp. 907–934.



Influence of Surface Tension and Pressure Gradient

• Effect of Interfacial Tension (γ):
• Higher γ → lower growth rate M*
• Capillary term γ𝑘2 stabilizes interface
• Especially effective at suppressing 

high-frequency perturbations

• Effect of Effective Pressure Gradient 
(𝐺2−𝐺2 − 𝛾𝑘2):
• Strong positive gradient → 

destabilization (finger growth)
• Low or negative gradient → 

stabilization (finger decay)
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Power-Law Fluids: Agreement and Deviations
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• 2D simulation growth rates M* vs. linear 
theory predictions 
➔ General linear trend observed, BUT with 
noticeable scatter

• Deviations linked to:  
• Strong shear-thinning effects (extreme 

values of n)
• Varying interfacial tension (non-linear)
• Known limitations in gap-averaged model 

(e.g. underestimated shear Or higher 
effective viscosity ➔ reduced rate)



Stability in Power-Law Displacement

• Friction Gradient Ratio (1/λ)
• 𝑀* >0 when G2 > G1→ unstable
• Transition around 𝜆 ≈ 1

• Interfacial Tension (γ)
• Higher γ → lower 𝑀*, suppresses fingering
• 2D model shows weaker dependence at low γ

• Flow Behavior Index (n)
• Lower n (stronger shear-thinning) → stabilizes
• Agreement improves as n → 1 (Newtonian) 

• Combined Effect (k and n)
• High k & low n → high 𝑀*(strongest fingering)
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Newtonian vs. Power-Law

•  Newtonian Fluids
• Growth rate governed by friction pressure gradient (viscosity contrast) 

and interfacial tension
• 2D simulations vs 3D DNS & linear theory, almost perfectly
• Transition between stable and unstable regimes, very clear

• Power-Law Fluids
• Same general trends, BUT:

• Rheology-dependent damping/amplification (by k and n)
• Discrepancies between theory & 2D models

• Limitations:
• Cross-gap shear not fully captured in 2D gap-averaged model
• Effective viscosity may be overestimated → lower M* in simulation
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Conclusion & Future Work

Key Conclusions
• Growth rate of interfacial instabilities 

well quantified across Newtonian 
and power-law fluids

• 2D gap-averaged model shows:
• Excellent agreement with theory 

for Newtonian cases
• Predictive but some discrepancies 

for power-law fluids
• Critical parameters governs 

interfacial instability: 𝜆, γ, n, k

Future Directions
• Refine shear-stress modeling to 

address cross-gap effects
• Explore 3D simulations or hybrid 

models for high-shear regimes
• Extend model to tapered or radial 

geometries
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Thank you! 
Any Questions? 
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