

Viscous Fingering and Interfacial Instability Growth for Power-Law Fluids in Hele-Shaw Cells

Yao Zhang, Knut Erik Teigen Giljarhus, Hans Joakim Skadsem

University of Stavanger, NO-4021 Stavanger, Norway

Why Study Interfacial Instabilities?

Interfacial instabilities occur in many multiphase flow systems, especially in porous media and confined geometries.

- Classic example
 - Saffman-Taylor instability: viscous fingering when a less viscous fluid displaces a more viscous one.
- These instabilities can **drastically reduce displacement efficiency**, critical in oil recovery, groundwater remediation, and microfluidics.
- Understanding and predicting interface growth is essential to improve flow control.

Beyond Newtonian Fluids: Added Complexity

- Classical theory → well predicted onset of fingering
- CFD → resolve full fingering patterns
- Shear-thinning fluids → more complex interface dynamics, harder to predict
 - Theoretical power-law fluids:
 - Mora & Manna's ^[1]criteria → linear regime
 - CFD → onset of instability & detailed patterns
 - Realistic fluids with polymers:
 - Adding polymer: Shear-dependent viscosity (shear-thinning/thickening), develop normal stresses, elastic deformation (viscoelasticity)
 - Viscosity field varies spatially
 - → Power-law model does not capture these effects, very limited comparison

[1] S. Mora and M. Manna. "Saffman-Taylor instability for generalized Newtonian fluids". In: Phys. Rev. E 80 (1 July 2009), p. 016308. doi: 10.1103 / PhysRe&E.80.016308. url: https://link.aps.org/doi/10.1103/PhysRevE.80.016308.

Research Objectives

- Quantify **the growth rate of perturbations** in two-fluid displacement inside a Hele-Shaw cell.
- Analyze both Newtonian and power-law (shear-thinning) fluid systems.
- Evaluate stability criteria using a developed 2D model in OpenFOAM
- 2D CFD simulations vs. linear stability theory :
 - Friction pressure gradients
 - Influence of *interfacial tension*
 - The effect of rheological parameters (k, n from power-law fluids)

Under what conditions do perturbations grow, decay, or stabilize? How accurately can we predict them with the 2D model?

Theoretical Framework: From Newtonian to Power-Law

• Mora & Manna ^[1]'s general linear stability:

$$M = \frac{(G_2 - G_1 - \gamma k^2)k}{\sqrt{\frac{G_2}{V_2}\frac{dG_2}{dV_2}} + \sqrt{\frac{G_1}{V_1}\frac{dG_1}{dV_1}}}$$

- M: Perturbation growth rate
- *G_i*: Unperturbed friction pressure gradient
- γ: interfacial tension
- k:wavenumber

• For Newtonian Fluids:

$$M = \frac{1}{\eta_2 + \eta_1} \cdot \frac{kh^2}{12} \cdot (G_2 - G_1 - \gamma k^2)$$
Non-Dimensional
$$The classic growth rate depends on viscosity contrast & interfacial tension
$$\frac{Mh}{U} = M^* = \frac{kh}{\eta_2 + \eta_1} \left[(\eta_1 - \eta_2) - \frac{\gamma k^2 h^2}{12U} \right]$$$$

[1] S. Mora and M. Manna. "Saffman-Taylor instability for generalized Newtonian fluids". In: Phys. Rev. E 80 (1 July 2009), p. 016308. doi: 10 . 1103 / PhysRevE . 80 . 016308. url: https://link.aps.org/doi/10.1103/PhysRevE.80.016308.

Dimensionless Growth Rate for Power-Law Fluids

• For power-law fluids:

$$\begin{split} U &= V_i(G_i) = \frac{(h/2)^{1+1/n_i}}{2+1/n_i} \frac{G_i^{1/n_i}}{k_i^{1/n_i}} \\ G_i &= cV_i^{n_i} \\ \frac{G_i}{V_i} \frac{dG_i}{dV_i} = n_i \left(\frac{G_i}{V_i}\right)^2 = n_i \left(\frac{G_i}{U}\right)^2 \end{split}$$

$$\frac{Mh}{U} = M^* = \frac{(1-\lambda)hk - (hk)^3/Ca}{\lambda\sqrt{n_1} + \sqrt{n_2}}$$

- M*: non-dimensional perturbation growth rate
- $\lambda = G_1/G_2$: ratio of friction pressure gradients
- Ca = $G_2 h^2 / \gamma$: capillary number
- n_i : flow behavior index (shear-thinning <1)
- k:wavenumber
- γ: interfacial tension
- λ governs balance between destabilizing and stabilizing forces
- Capillary force suppress high-wave number growth
- **Rheology** enters through n1 and n2: controls denominator (growth damping)

Fast and Robust 2D Simulation Framework:

Gap-Averaged Model for Hele-Shaw flow of power-law and Newtonian fluids

- 2D gap-averaged model^[2]developed and implemented in OpenFOAM
 - Hele-Shaw approximation:
 - Flow confined to the plane (*no velocity component* in the gap direction)
 - Fully developed velocity profile in the gap for power-law fluids
 - Momentum equation integrated over the gap width to reduce dimensionality
 - Captures essential physics at ~200x less cost than 3D models
- Governing equations:
 - Gap-averaged continuity and momentum
 - Shear-rate approximate by its gap-wise contribution
- Interface tracked using Volume of Fluid method
- Simulations run for 20 s, data sampled every 1 s

$$\left(\partial_t \mathbf{u}_0 + \frac{2(m_i+2)}{2m_i+3} \mathbf{u}_0 \cdot \nabla_0 \mathbf{u}_0 \right) = -\nabla_0 p(z,x) + \nabla_0 \cdot \tau - k_i \left(\frac{2}{h}\right)^{n_i+1} (m_i+2)^{n_i} \|\mathbf{u}_0\|^{n_i-1} \mathbf{u}_0 + \rho_i \mathbf{g}, \quad (9)$$

- $\dot{\gamma} = \frac{2(m_i+2)}{h} \left| \frac{2y}{h} \right|^{m_i} \|\mathbf{u}_0\|.$
- 0.05 m x 0.2 m x 0.001 m
- 128 x 512 cells, 1 cell in gap

[2] Yao Zhang et al. "Numerical modeling of fluid displacement in Hele-Shaw cells: a gap-averaged approach for power-law and Newtonian fluids". Rheologica Acta (2025), pp. 1–16.

Universitetet i Stavanger

Interfacial Evolution from (2D vs 3D vs Experiment ^[2])

Oil displacing Xanthan gum at different flow rate

Oil displacing Polyacrylamide at different flow rate

Xanthan gum displacing Oil at different flow rate

Increasing Timestep

Polyacrylamide displacing Oil at different flow rate

[2] Yao Zhang et al. "Numerical modeling of fluid displacement in Hele-Shaw cells: a gap-averaged approach for powerlaw and Newtonian fluids". Rheologica Acta (2025), pp. 1–16.

Controlled Onset of Viscous Fingering

• **Controlled Initial interface** given a *single sinusoidal perturbation*

 $y(x) = Asin(kx) + y_0$

- Amplitude A = 0.004 m
- Wavenumber k = $2\pi/0.05m^{-1}$
- Offset $y_0 = 0.002 m$

- To ensure reproducible, well-defined growth conditions
- Avoids random perturbations from numerical noise
- Finger length tracked overtime → fitted to an exponential curve to extract growth rate

Fluids, Parameters, and Simulation Setup

Newtonian Cases

- **Displacing fluid:** water-based solution (density 998 kg/m³)
- Displaced fluid: mineral oil (viscosity 0.133 Pa·s, density 887.6 kg/m³)
- Imposed velocity varied
- Interfacial tension: varied from 10^{-10} to 0.09 mN/m

[3] PR Varges et al. "Immiscible liquid-liquid displacement flows in a Hele-Shaw cell including shear thinning effects". Physics of Fluids 32.1 (2020)

[4] Maduranga Amaratunga et al. "Predicting rheological properties of waterbased polymer mixtures from their component properties – Poly-Anionic Cellulose and Xanthan gum". ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 26. 2018.

Power-Law Cases

- **Displacing & displaced fluid:** either mineral oil or power-law fluid
 - **Real power-law fluids:** Xanthan gum & polyacrylamide solutions
 - Rheological parameters k and n from experiments in literature, → e.g., Varges et al.^[3], Amaratunga et al.^[4]
- Broad parametric ranges explored:
 - Friction pressure gradient: $\lambda = G_1/G_2 \in [0.42, 12.87]$
 - Capillary number: Ca∈[0.0125,1.071]

Newtonian Case: 2D Simulation vs. 3D DNS & Theory

- Validated against results from Lu et al. (2020) ^[5]:
- \rightarrow 3D simulations & linear stability theory
- 3 benchmark cases with:
 - **Negative, zero,** and **positive** growth rates.
- 2D simulation results match:
 - Theoretical predictions
 - 3D DNS evolution of finger length over time

[5] Daihui Lu, Federico Municchi, and Ivan C Christov. "Computational analysis of interfacial dynamics in angled Hele-Shaw cells: instability regimes". Transport in Porous Media 131.3 (2020), pp. 907–934.

Influence of Surface Tension and Pressure Gradient

Effect of Interfacial Tension (γ):

- Higher $\gamma \rightarrow$ lower growth rate M*
- Capillary term γk^2 stabilizes interface
- Especially effective at suppressing high-frequency perturbations

Effect of Effective Pressure Gradient

 $(G_2 - G_2 - \gamma k^2)$:

- Strong positive gradient → destabilization (finger growth)
- Low or negative gradient → stabilization (finger decay)

Power-Law Fluids: Agreement and Deviations

- 2D simulation growth rates M* vs. linear theory predictions $\frac{Mh}{U} = M^* = \frac{(1-\lambda)hk - (hk)^3/Ca}{\lambda\sqrt{n_1} + \sqrt{n_2}}$
 - → General linear trend observed, BUT with noticeable scatter
- **Deviations** linked to:
 - Strong shear-thinning effects (extreme values of n)
 - Varying interfacial tension (non-linear)
 - Known limitations in gap-averaged model (e.g. underestimated shear Or higher effective viscosity → reduced rate)

14

Stability in Power-Law Displacement

- Friction Gradient Ratio (1/λ)
 - $M^* > 0$ when G2 > G1 \rightarrow unstable
 - Transition around $\lambda \approx 1$
- Interfacial Tension (γ)
 - Higher $\gamma \rightarrow \text{lower } M^*$, suppresses fingering
 - 2D model shows weaker dependence at low γ
- Flow Behavior Index (n)
 - Lower n (stronger shear-thinning) → stabilizes
 - Agreement improves as $n \rightarrow 1$ (Newtonian)
- Combined Effect (k and n)
 - High k & low n \rightarrow high M^* (strongest fingering)

Newtonian vs. Power-Law

Newtonian Fluids

- Growth rate governed by friction pressure gradient (viscosity contrast) and interfacial tension
- 2D simulations vs 3D DNS & linear theory, **almost perfectly**
- Transition between stable and unstable regimes, very clear

• Power-Law Fluids

- Same general trends, BUT:
 - *Rheology-dependent* damping/amplification (by k and n)
 - Discrepancies between theory & 2D models
- Limitations:
 - Cross-gap shear not fully captured in 2D gap-averaged model
 - Effective viscosity may be overestimated → lower M* in simulation

Conclusion & Future Work

Key Conclusions

- Growth rate of interfacial instabilities well quantified across Newtonian and power-law fluids
- 2D gap-averaged model shows:
 - *Excellent agreement* with theory for **Newtonian cases**
 - Predictive but some discrepancies for power-law fluids
- Critical parameters governs interfacial instability: λ , γ , n, k

Future Directions

- Refine shear-stress modeling to address cross-gap effects
- Explore 3D simulations or hybrid models for high-shear regimes
- Extend model to tapered or radial geometries

Acknowledgements & Open Access Model

- Research conducted at *University of Stavanger*
- Supported by:
 - Supervisor: Prof. Hans Joakim Skadsem
 - Prof. Knut Erik Teigen Giljarhus
 - Department of Energy and Petroleum Engineering
- Computational resources: UiS HPC Cluster
- 2D Model and sample case for simulation available at: https://github.com/feebsssz/heleShawFoam

11.06.2025