Binarization of Degraded Documents Using a Hybrid Model Between a Classical Method and a Deep-Learning Approach

Milan Ćurković¹ Andrijana Ćurković²

¹Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Croatia
²Faculty of Science, University of Split, Croatia

OES 2025

Degraded Documents: A Complex Problem

FICTEDEECENOC ... ENOCT THE CECENAC ENACT A TALIPIA ON KYNEHMORTOL. HATINONS FLODOCKSOTTOFOEL TINACINONS CLOGOCKSOTTETOELIE DEATR JULLANT PEA WK KOTTOLL LEXALKOCATTAN STANO KEXANKOCATTAY 100 1NO. Sutto of Brends - Sixte of Brends Ramp Legan Sa. Hemp Sigan Sa. CTILACK & OYTTHCASIAS HNAIM - KANYTYNCAMALHNA ALLACIA HATTENY XPTCOLOLIYA HA OLIXEN ETTENY SOLETTE TOL AIRACIA HATTELY XPYCOLOLLYNHH "WILLEN CTUTTA - WICHTEN - ATAKOCHON-FYKELLONA SCHERC THT ACCOUPH. CTOCA BONNEMENT TRITOCAPEO -- PHE THEE ATTITHONETITA PORCOC SETTITHUSHETITAPT WKOCH CITOMALE TERILO NENIL

Classic Methods

- Global Thresholding (Otsu): Single threshold for entire image
- Local Thresholding (Sauvola): Pixel-wise adaptive thresholds
- Hybrid Thresholding (Our prior work [1]): Global thresholds and pixel-wise adaptive thresholds

Machine Learning Approaches

- Supervised: CNNs (U-Net) learn from labeled data
- Unsupervised: Clustering (K-means) for auto-segmentation
- GANs: Adversarial training for refined outputs

Classic Methods

Advantages	Limitations
 Simple implementation 	 Manual parameter tuning required
 Fast execution (real-time) 	 Local optima convergence
Machine Learning Approaches	
Advantages	Limitations
 Handles complex backgrounds 	 Requires large labeled datasets
 No manual parameter tuning 	 Overfitting risks
 Adaptable to diverse input con- 	 Limited generalization to unseen
ditions	data
	• Computationally intensive - GPU needed

Key Trade-offs:

- Classic: Fast but inflexible
- ML: Robust but resource-intensive

Teacher-Student Framework

Core Idea: Combine classical methods' efficiency with ML's adaptability.

Teacher-Student Analogy:

- Teacher: Classical methods (Otsu, Sauvola, etc.) as prototype
 - Provides initial binarization rules
- Student: CNN model
 - Learns to enhance the teacher's output through deep optimization

Key Insight Combine computational efficiency of classical methods with adaptive power of deep learning

B-spline Enhanced Hybrid Model

Motivation

Overcome local optima in classical methods through parametric hypersurface optimization.

- Classical methods → local minima in optimization landscape
- CNN learns to approximate & adjust the binarization hypersurface

Classic binarization method [1]

Logistic decision function:

$$f(T_i, B_i) = m_{tb} + \frac{1 - m_{tb}}{1 + m_{tb}^2 * \exp\left(m_{tb} + \frac{255/2 - T_i}{m_{tb} * T_i}\right)}$$
(1)

Final binarization decision function:

$$Binary(x, y) = \begin{cases} 1 & \text{if } I(x, y) < f(T_i, B_i) \cdot L_m \wedge I(x, y) < L_a \\ 0 & \text{otherwise} \end{cases}$$
(2)

Text intensity T_i ; Background intensity B_i ; $m_{tb} = \max(T_i/255, 1 - B_i/255)$

E-mail: milan.curkovic@fesb.hr

B-spline Enhanced Hybrid Model

Hybrid Architecture:

- Parametric Component: B-spline surface
- Neural Component: CNN adjusts B-spline parameters

Training Strategy:

- Per-pixel EMA (Exponential Moving Average): Selective grid updates
- Multi-term Loss: $\mathcal{L} = \alpha \mathcal{L}_{FM} + \beta \mathcal{L}_{NRM} + \gamma \mathcal{L}_{smooth}$
- Learnable temperature parameter

Binarization Formula:

Hybrid Binarization System - Updated B-spline Surface

Table 1: Top row displays the B-spline surface updates after 500, 1000, and 2000 training epochs. Bottom row illustrates the differences between the original surface and each update at 500, 1000, and 2000 epochs.

Hybrid Binarization System - Measures FM & NRM

• Hybrid: B-spline surface after 2000 epochs

	FM		NRM	
Dataset	Original	Hybrid	Original	Hybrid
DIBC02009	0.853428	0.857464	0.098911	0.098286
DIBC02011	0.852309	0.852111	0.105821	0.104770
DIBC02013	0.854460	0.855951	0.102862	0.100566
DIBC02016	0.886066	0.887100	0.080498	0.080044
DIBC02018	0.715489	0.714246	0.152436	0.153628
DIBC02019	0.727425	0.734166	0.113878	0.113998

-Ιτονικειεχτουνεκτ τονικειεχτουνεκτ τονικειεχτουνεκτ -τονικειεχτουνεκτ -τονικειετ -τονικει -τονικειετ -τονικει -τονικ -τονικει -τονικ -τονικ -τονικ

HINCAREYKERE TAXAD ATUIELOS ENTO AdTINGSOLA ATE T WAE STATEMAACENOPLI AT APPERATA IN CAPIERS PER MERE THIS Y SAXICEN KENIHIC HERIENON CENALIN 1-1- "BAMANEIUTHKE TYXETS PITABOIOBAC ... AND WHICH THIS TEXAMOSTICS ON UNA . 10 HIMER ITING CHETADETTAT CARATUTENER & PATACTICACUPS SETTE CANT AL AMA ALT, CIUNCITY OT TAXAT TELE PREAM & THE SECOND TO THE SECOND FENTTPOLOS TOPOL \$1.20 - Benter - - ANA ALOF

Hybrid

Enhanced Hybrid Architectures - Future Work

Two U-Net Models Incorporating the Proposed Classical Method [1]

- **Standard U-Net Model** Utilizes a conventional U-Net architecture to directly predict the binarized output from the input features, including the initial binarization.
- Hybrid U-Net Model Integrates the classical binarization formula to compute an initial binarization, which is then provided as an additional input channel to the U-Net.

	Standard U-Net model	Hybrid U-Net model
Input	4 channels: Image, Median,	5 channels: Adds classical bina-
	Average, B-spline	rization output
Architecture	Standard U-Net	Classical binarization $ ightarrow$ U-Net $ ightarrow$
		Residual blend
Output	Direct prediction	lpha imes Refined + (1 - lpha) imes Classical
Focus	Pure deep learning-based seg-	Incorporates classical methods for
	mentation	robustness
Adaptability	Limited to learned features	Leverages prior domain knowl- edge

Key Contributions

- Novel hybrid binarization framework
- Teacher-student knowledge transfer
- B-spline surface optimization
- Multi-term loss function

Practical Impact

- Cultural heritage: Digitization of ancient manuscripts
- Legal: Archival document processing
- Education: Historical text preservation

Thank You!

Questions? milan.curkovic@fesb.hr

 Milan Ćurković and Andrijana Ćurković. Binarization of degraded documents: A classic and generic method accompanied with a new semantic evaluation metric - MCHAM (May 20, 2025). Available at SSRN: https://ssrn.com/abstract=5262391. DOI: 10.2139/ssrn.5262391. URL: https: //www.ssrn.com/abstract=5262391.