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Contribution 
 
 

• Design, for the first time, of chlorine soft sensors for primary WDNs, using a safe switching observer approach. 

• The primary WDN is modeled by a set of nonlinear hyperbolic partial differential equations (PDEs) that govern fluid 

dynamics within the pipe network, alongside additional PDEs representing the advection, dispersion, and decay of chlorine. 

• The model also accounts for user water demand. 

• The PDE-based model is approximated by a nonlinear system of ordinary differential equations (ODEs). 

• Linearized models are then generated around selected operating points, forming the basis for a bank of switching linear 

observers tasked with estimating chlorine concentration at designated locations within the network. 

• The parameters of these observers are optimized using a metaheuristic algorithm. 

• Data-driven, rule-based switching mechanism is employed to select the appropriate observer based on the current operating 

condition. 

• The effectiveness of the proposed observer design is validated through computational experiments, demonstrating its 

satisfactory performance. 

  



 

Advantages of the Proposed Approach 
 

Compared to Linear Observers based upon a Single Operating Point 

• More effectivve and accurate in the sense that single operating point observers are in general poor at describing dynamic 

behavior when the system moves away from the operating point.  

 
Compared to Nonlinear Observers 

• The switching approach of linear observers is less sensitive to parameter changes and noise, as well as more resilient 

towards model uncertainties.  

• Nonlinear observers, although they are theoretically capable to estimate system dynamics, are subject to requiring precise 

information of the system and are prone to divergence when exposed to actual-world disturbances or model errors.  

 
Compared to Machine Learning Estimation Methods 

• The method at hand provides interpretability, convergence guarantees, and reliability.  

• Machine learning methods operate in general as black box methods and their results depend upon the training data set.  

• Machine learning methods typically require significant computational resources. 
  



Water Distribution Network Modeling (1) 
Assumptions 

• Each pipe is straight and free of fittings or slope. 
• The fluid exhibits slight compressibility. 
• The duct walls are slightly flexible. 

• Variations in convective velocity are negligible. 
• The duct maintains a constant cross-sectional area. 
• The fluid density and viscosity remain constant. 

 

Flow and Pressure in a Conduit 
 

 
 

Q :  Volumetric flow rate 
H : Pressure head 
z :  Spatial coordinate 
t :   Time 
g :  Gravitational acceleration 

A:  Cross-sectional area of the conduit 
b :  Pressure wave speed 
D : Inner conduit diameter 
f :  Friction coefficient 
ε :  Relative roughness of the pipe. 
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Water Distribution Network Modeling (2) 
Friction Coefficient 
 
Types of flow (depending upon the Reynolds number - Re): 
• Laminar flow, 

• Transient flow, 

• Turbulent flow (typical for WDNs). 

 

 
 

Chlorine Concentration 
 

 
 

c :  Constituent concentration. 1k :  First order reaction rate (considered to be constant). 
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A Benchmark Branched Water Distribution Network (1) 
 

 
 
Characteristics 
 
• Main line with one branch. 

• Three reservoirs providing variable / actuatable head pressure to the network 

• Water demand to unmodelled parts of the network, acting as measurable disturbance. 

  



 
A Benchmark Branched Water Distribution Network (2) 

 
PDE Model of the Network 
 

 
•  jQ , jH  and jc   ( 1,2,3j = )  are the volumetric flow rates, pressures and chlorine concentrations in the respective conduits. 
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Appropriate algebraic constraints and boundary conditions 

must be imposed for the above set of PDEs to accurately repre-

sent the water distribution network. 



Approximation through a System of ODEs 
 
Assumptions 

• The PDEs describing the network will be discretized in space using a finite different approximation. 
• The friction coefficient follows formula presented in Slide 5.  
• The flow in the conduits is slowly varying and the flow variables can be discretized in space using a single step.  
• The PDEs describing chlorine concentrations are divided into cln  sections. 
• The flows in the conduit do not change directions. 

 
Nonlinear ODE Model in State Space Form 
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Operating Points (1) 
Definitions 

ju  ( 1, ,5j =  ):  Nominal values of the inputs of the system. 

ix  ( 1, ,13i =  ):  Nominal values of the state variables. 

u :          Vector of nominal values of the inputs. 

x :          Vector of nominal values of the state variables. 

 
Solution 

 
Constraints 
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Operating Points (2) 
Solvability with Respect to the Nominal Values of the State Vector 

 
• ( ) ( ) 13 13

,
,s s i j

J x u j × = ∈    

Solvability Conditions (through Implicit Function Theorem) 

 

• The first condition is true, as the nominal values of the flow rates and physical parameters are positive. 

• Regarding the second condition, it is observed that in the present case, namely the case of turbulent flow, the parameters 

( ) ,s j j
j ( 1,2,3j = ) are negative and hence the condition holds true. 
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Linear Approximant 
 

Linear Approximant Model 

 
 
• xδ  is the response of the above linear system for u u u uδ = ∆ = − , that approximates x x x∆ = −  around the operating point 

( ),o u x= . 

Linear Approximant System Matrices Reformulation 
 
Since the vector  x  can be determined given the vector u , there exist a nonlinear vector function, mapping the nominal values of 
the inputs and the nominal values of the states. 
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A Luenberger type Full order Observer for the WDN 
Measurable Variables 

i. Volumetric flow rates downstream the node. 
ii. Chlorine concentrations at the entrance of reservoirs 2 and 3 

 
• my : Vector of measurable variables 
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Full order Observer 
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Observer Design (1) 
Linear Approximant Characteristic Polynomial 

 

• ( )fp s  is a fourth order polynomial, depending upon the parameters of the fluid dynamics 

• ( )cp s  is a ninth order polynomial, depending upon the chlorine concentration parameters. 

Special form of the observer Linear Approximant Characteristic Polynomial 

 

Observer Characteristic Polynomial 
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Observer Design (2) 
Assumptions - Definitions 
• Let ,f jπ  ( 1, ,4j =  ) are the roots of ( )fp s  and ,c iπ  ( 1, ,9i =  ) are the roots of ( )cp s . 

• Without loss of generality, assume that ( ) ( ), , 1Re Ref j f jπ π +≤  ( 1,2,3j = )  and that ( ) ( ), , 1Re Rec i c iπ π +≤  ( 1, ,8i =  ).  

Constraints 

• The roots of ( ),o fp s  and ( ),o cp s  are real and negative, i.e., ( ) ( )4
, ,1

( )o f f jj
p s s οπ=

= −∏  and ( ) ( )9
, ,1

( )o c c ii
p s s οπ=

= −∏ , where 

,( ) 0f jοπ <  ( 1, ,4j =  ) and ,( ) 0c iοπ <  ( 1, ,9i =  ). 

• The roots of ( ),o fp s  and ( ),o cp s  are ordered and have a minimum distance between them being equal to γ  i.e. it holds that 

, 1 ,( ) ( )f j f jο οπ π γ+ − >   ( 1,2,3j = ) and  , 1 ,( ) ( )c i c iο οπ π γ+ − > . 

• Regional per pole stability is achieved, i.e. it holds that ( ) ( ), ,Ref f jjοπ λ π>  and ( ) ( ), ,Rec c iiοπ λ π>  where  0λ > . 

Toward Determination of the Observer Degrees of Freedom 
• The parameters γ  and λ  are to be selected by the observer designer.  

• The pole placement problem will be solved using the observer degrees of freedom appearing in the first columns of ( )1,1G u  

and ( )2,2G u .  



A Heuristic Approach toward Determination of the Observer Degrees of Freedom (1) 

Observer Frequency Response Dynamics 
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The elements of the free observer parameter vector will be 

determined using a metaheuristic algorithm so that the 

influence of the free response is attenuated. 



A Heuristic Approach toward Determination of the Observer Degrees of Freedom (2) 

Cost Criterion to be Minimized 

 

 
• ( ) ( ){ },

1
,i j i jh t sϕ−=  is the { },i j  element of the transition matrix of the observer dynamics. 

• { }1− •  denotes the inverse Laplace transform of the argument transfer function. 

• The optimization procedure must be executed separately at each operating point. 

 
 
*  Drosou, T.C., Kouvakas, N.D., Koumboulis, F.N., Tzamtzi, M.P.: A Mixed Analytic/Metaheuristic Dual Stage Control Scheme Toward I/O Decoupling for a Differential Drive Mobile Robot. In: 

Farmanbar, M., Tzamtzi, M., Verma, A.K., Chakravorty, A. (eds) Frontiers of Artificial Intelligence, Ethics, and Multidisciplinary Applications. FAIEMA 2023. Springer, Singapore, pp. 197–214 

(2024). 

Kouvakas, N.D., Koumboulis, F.N., Sigalas, J.: A Two Stage Nonlinear I/O Decoupling and Partially Wireless Controller for Differential Drive Mobile Robots. Robotics 13(2), 26 (2024). 
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The main idea of the algorithm* is to define a search area for the ob-
server parameters and after series of computations to contract to 

suboptimal values, satisfying the observer constraints. 



Target Operating Areas (1) 
Definitions 

• ju  denotes the steady state value of ju  ( 1, ,5j =  )  during a step wise transition. 

• ju  denotes the nominal values of the inputs. 

• ix  ( 1, ,13i =  )  denotes  the steady state value of the state variable ix  corresponding to ju ( 1, ,5j =  ). 

• u  and x  denote the steady state input and state variable vectors corresponding to the above transition.   

• ex  denotes the steady state of the observer 

 
• Five-dimensional spheroid or radius R  
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Target Operating Areas (2) 

Normalized estimation steady state error metric 
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• This procedure must be repeated for a sufficiently large number of points to ensure that the desired area is covered by 

target operating regions that satisfy the dense web principle. 
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The target area for the operating point ( ),o u x=  is defined as the 
maximum radius of the spheroid, such that all input transitions from the operating point to a new steady state value 

inside the spheroid, result in  ,maxss ssε ε< , where ,maxssε  is a positive parameters selected by the observer designer. 



 
Switching Between Observers 

 
• For proper operation it is evident that a switching mechanism that appropriately enables the operation of appropriately 

chosen observer of the bank is necessary. 

• Considering that the performance outputs of the system are measurable in real time and that the trajectory of the nonlinear 

process is known, an approach based upon the convergence of the measurable variable of the system to their target values is 

proposed.  

 
Convergence metric 

 

 

 
• Switching between observers will take place whenever the convergence metric reaches a threshold sε

+∈ , i.e. when 
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Simulation Results (1) 
Convergence metric 

2
1 0.0079 mA  =   , 2

2 0.0079 mA  =   , 2
3 0.0028 mA  =   , [ ]1 62 mL = , [ ]2 124 mL = , [ ]3 80 mL = , [ ]1 0.1 mD = , [ ]2 0.1 mD = , 

[ ]3 0.06 mD = , [ ]1 0.0035ε = − , [ ]2 0.0035ε = − , [ ]3 0.0058ε = − , 2m/sg  =   , 3Kg/mρ  =   , [ ]0.0011 Pa sµ = , [ ]3cln = −  , 
-1

1 0.1 hk  =   , [ ]1200 m/sb = , [ ]1 0.308642λ = − , [ ]2 6.9λ = − , [ ]3 3.7λ = − , [ ]4 1.11λ = − . 

Operating point trajectory 
 

# [ ]1 mu  [ ]2 mu  [ ]3 mu  [ ]4 l/minu  [ ]5 mg/lu  
1 20.0000 17.0000 14.0000 360.0000 2.0000 
2 20.5263 16.8947 14.1053 356.8421 1.9737 
3 21.0526 16.7895 14.2105 353.6842 1.9474 
4 21.5789 16.6842 14.3158 350.5263 1.9211 
5 22.1053 16.5789 14.4211 347.3684 1.8947 
6 22.6316 16.4737 14.5263 344.2105 1.8684 
7 23.1579 16.3684 14.6316 341.0526 1.8421 
8 23.6842 16.2632 14.7368 337.8947 1.8158 
9 24.2105 16.1579 14.8421 334.7368 1.7895 
10 24.7368 16.0526 14.9474 331.5789 1.7632 
11 25.2632 15.9474 15.0526 328.4211 1.7368 
12 25.7895 15.8421 15.1579 325.2632 1.7105 
13 26.3158 15.7368 15.2632 322.1053 1.6842 
14 26.8421 15.6316 15.3684 318.9474 1.6579 
15 27.3684 15.5263 15.4737 315.7895 1.6316 
16 27.8947 15.4211 15.5789 312.6316 1.6053 
17 28.4211 15.3158 15.6842 309.4737 1.5789 
18 28.9474 15.2105 15.7895 306.3158 1.5526 
19 29.4737 15.1053 15.8947 303.1579 1.5263 
20 30.0000 15.0000 16.0000 300.0000 1.5000 



Simulation Results (2) 
Metaheuristic Algorithm Parameters 
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Spheroid Radii per Operating Point 

# R  # R  
1 0.0603 11 0.2184 
2 0.0833 12 0.2065 
3 0.1043 13 0.1837 
4 0.1292 14 0.2080 
5 0.1466 15 0.2121 
6 0.1696 16 0.2169 
7 0.1828 17 0.2191 
8 0.1789 18 0.2209 
9 0.1838 19 0.2493 
10 0.2452 20 0.2541 

 
 
 

The target areas are overlapping and consequently, to implement an observer 
switching scheme as described previously, not all points need to be used. 

Indicative Projection of the Target 
area for points 1, 8 and 16 

(1 – cyan, 8 – green, 16-red) 



Simulation Results (3) 
 
Transitions Definition 

i. Initial Point: [ ]1 19.7556 mu = , [ ]2 17.0289 mu = , [ ]3 14.0429 mu = , [ ]4 360 l/minu = , [ ]5 2.0039 mg/ltu =  

ii. Transition Point 1: [ ]1 20.7163 mu = , [ ]2 16.7226 mu = , [ ]3 14.0429 mu = , [ ]4 354 l/minu = , [ ]5 1.9697 mg/ltu =  

iii. Transition Point 2: [ ]1 24.7883 mu = , [ ]2 15.8112 mu = , [ ]3 14.9878 mu = , [ ]4 324 l/minu = , [ ]5 1.7221 mg/ltu =  

iv. Final Point: [ ]1 27.8408 mu = , [ ]2 15.4377 mu = , [ ]3  15.7097 mu = , [ ]4 312 l/minu = , [ ]5 1.5826 mg/ltu =  

 
 

 
 
  

Transitions 1u  to 4u  from point to point will be assumed to take place 

smoothly and not in step form. This is a common approach in closed conduits 

and water distribution networks to prevent water hammer effects, which can 

potentially damage infrastructure. 



Simulation Results (4) 
 

       

       
 
 



Simulation Results (5) 
 

       
 

                   
    

Switching between observers 
took place at [ ]9.42 mint =  and at 

[ ]14.82 mint = . 



Simulation Results (6) 
 

• The observer is highly accurate with negligible deviations that are visible in only a few instances. 

• Regarding the non-measurable variables  

o The volumetric flow rate through conduit 1 shows a nearly ideal match between the system response and the observer 

estimate. The estimation curve closely tracks the system curve, both in steady-state operation as well as under sudden 

changes when switching takes place.  

o The head pressure estimation is very close to tracing the system response. However, there is a temporary mismatch 

during the step changes, where estimation is slightly behind the system response. Nevertheless, the estimation ap-

proaches the correct value, demonstrating that the observer is still reasonably accurate. 

o The estimations of chlorine concentrations show that the observer performs satisfactorily for all parts of the conduits 

being observed. The estimated concentrations follow the actual system responses accurately, following their steady-

state levels and their dynamic transitions, with high accuracy. Minor deviations are observed in the steeply sloping 

(observer switch points) 

• Regarding estimation of the measurable variables, they are practically identical to the respective measurements.  



 
Conclusions 

• In the present paper, a novel design approach for chlorine soft sensors in primary WDNs, employing a bank of linear safe 

switching observers has been presented.  

• The method has employed a nonlinear dynamic approximation of the PDE-based fluid and chlorine transport dynamics 

and a linear approximant of the nonlinear approximation about selected operating points.  

• The observer parameters have been optimized with a metaheuristic algorithm.  

• A rule-based data-driven switching has been adopted to switch observers in real time.  

• Computational experiments showed that the proposed method provides reliable and accurate chlorine concentration esti-

mates under various operating conditions.  

 

 Future research will focus on enhancing the observer's resilience. Toward this goal, adaptive learning mechanisms and 

machine learning techniques to adjust observer parameters, in response to model uncertainties and unmodeled dynamics, 

will be developed.  

 Experimental validation will be performed to evaluate the operational feasibility and scalability of the suggested solution 

within actual water networks. 


