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Abstract. Photosensitivity is a neurological disorder where the brain
produces abnormal epileptic reactions to visual stimuli known as Pho-
toparoxysmal Responses (PPR), which can sometimes result in epilepsy
seizures. The Intermittent Photic Stimulation (IPS) protocol is used to
diagnose this condition by exposing the patient to flashing lights -firstly,
at increasing frequencies and, secondly, at decreasing frequencies- while
recording the brain activity using an Electroencephalogram (EEG). Neu-
rophysiologists observe the EEG signals to identify PPR, taking care to
prevent triggering an epileptic seizure and halting the process if neces-
sary. Because of the nature of the stimulation and the low prevalence
of photosensitivity, automatically detecting these events is challenging
because PPR activity represents minority events of unusual brain activ-
ity amidst a large volume of regular recordings. In previous research, a
Variational AutoEncoder (VAE) was used to label EEG recordings from
IPS sessions; with the encoder and the decoder incorporating recurrent
neural networks and dense layers to deal with the EEG channels’ time
series. The VAE outperformed the current state of the art and a battery
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of unsupervised anomaly detection methods. However, training the VAE
involved Leave-One-Subject-Out cross-validation with a short number of
records (gathered from up to 9 diagnosed photosensitive patients); thus,
this approach needs testing on patients who do not have photosensitivity.
This study tackles this issue by gathering data from 5 patients who, al-
though suffering from epilepsy, are not photosensitive. In accomplishing
this, the VAE training uses data from 9 patients from prior research. The
resulting model then evaluates each non-photosensitive patient, identi-
fying anomalous EEG channel sequences of values. Results show the
performance of the proposed VAE when analysing the data of these pa-
tients, both from the computer science or the neurophysiology point of
view. This discussion leads to the design of the new generation of VAE
to improve the overall performance.

Keywords: Photosensitivity · Epilepsy · Electroencephalography · EEG
· Photoparoxysmal Response · PPR · Deep Learning · Anomaly Detection

1 Introduction

Photosensitivity is a neurological disorder in which the brain exhibits abnormal
reactions to certain visual stimuli, such as flashing lights or rapid visual pat-
terns, which can trigger epileptic activity. According to [2], approximately 30%
of epileptic patients are photosensitive. Furthermore, about 6% of the general
non-epileptic population experiences photosensitivity, as noted by [17]. The cur-
rent internationally standardized clinical diagnostic procedure for this condition
is known as Intermittent Photic Stimulation (IPS) [16]. It uses a flashing white
light to stimulate patients at varying frequencies while an Electroencephalogram
(EEG) registers their brain activity to provoke epileptic responses without caus-
ing full seizures, requiring constant attention, care and control by the clinical
staff.

These reactive epileptiform discharges are called Photoparoxysmal Responses
(PPR). [18] identified four different levels of PPR intensity, ranging from Type 1
to Type 4, where higher numbers represent more severe epileptic discharges and
an increased likelihood of seizures. However, real PPRs often present a mixture
of types, and the general morphology of brain activity can vary between patients
or even between different sessions for the same patient due to factors such as
treatment, sleep quality, or time of day [1]. Clinical neurophysiologists must
manually inspect and mark these phenomena in EEG recordings to perform the
diagnosis, making PPR detection a complex and demanding task.

The IPS procedure itself has notable limitations [2]. It requires significant
human resources to track PPR activity. Due to the small prevalence of this con-
dition [17] and the need to stop the stimulation session if epileptic activity occurs,
the amount of recorded PPR data is limited. This leads to a highly imbalanced
dataset that is unsuitable for Machine Learning (ML) and Deep Learning (DL)
models. Consequently, another possible approach is to take advantage of the
lack of PPR activity and view it as short bursts of abnormal brain behaviour
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within otherwise normal patterns, making it suitable for Anomaly Detection
(AD) solutions.

Accurate identification of anomalies is essential for all diagnostic processes
and presents significant challenges. Therefore, AD models have gained promi-
nence in the medical field in recent years due to their ability to detect abnormal-
ities from patient-specific baseline data. For example, a Generative Adversarial
Network (GAN) model to reconstruct adjacent brain MRI slices to identify ab-
normalities at various MRI stages [3] or an autoencoder to detect subtle abnor-
malities in chest X-rays and lymph metastase images [13] are some uses in clinical
imaging. In time-series data analysis, particularly for epilepsy and seizure de-
tection using EEG recordings, RNN-based models are promising for identifying
temporal anomalies [10]. Unsupervised GAN and semi-supervised Variational
Autoencoders (VAE) were explored by the same authors [12, 11] using behind-
the-ear EEG recordings. Simple ML algorithms are still being tested to detect
anomalies in this domain [5].

To the best of our knowledge, few studies have explored the analysis of PPR
for diagnosing photosensitivity beyond our previous research. For instance, [4]
proposed a PPR prediction method based on analyzing Fourier Components
derived from EEG segments captured just before PPR onset during IPS stimu-
lation. Additionally, [14] examined high-frequency brain oscillations in response
to a light stimulation procedure different from IPS. Our prior research has fo-
cused primarily on PPR detection when IPS is applied. This includes, but is
not limited to, the initial application of basic ML algorithms [8], followed by
the development of an ad-hoc Data Augmentation technique to address dataset
imbalance [6] and its effect in an Inception-based model pre-trained with an
epilepsy dataset following a Transfer Learning approach [9].

Our latest study [7] focused on comparing multiple unsupervised ML and DL
algorithms for detecting PPR anomalies. The results demonstrated that a VAE
model with Recurrent layers [11] significantly outperformed other state-of-the-
art methods. However, the performance of all models may have been impacted by
the presence of diverse EEG anomalies that were not considered during training,
potentially leading to a high number of False Positives when these unlabeled
anomalies were mistakenly detected as PPR events –but correctly identified as
anomalies–. This research aims to ascertain whether the VAE model can identify
these EEG anomalies. To do so, the model from the previous study, trained
exclusively on PPR anomalies, will be evaluated using EEG recordings from non-
photosensitive patients. These recordings contain no PPR activity but include
various correctly labeled EEG anomalies, providing a clearer understanding of
the model’s sensitivity to different types of anomalous brain activity.

The structure of this paper is as follows: the next Section describes the
datasets and the experimentation setup, Section 3 presents the results and their
analysis, and Section 4 provides the conclusions of this study and ideas for future
work.
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2 Materials and Methods

This section details the datasets collected at Cabueñes University Hospital used
to train and evaluate the VAE model in 2.1, along with the experimental setup
in 2.2. The experiment was implemented in Python.

2.1 Clinical Datasets

The clinical dataset comprises 14 anonymized EEG recordings from 9 photosensi-
tive and 5 non-photosensitive patients. Brain activity was continuously recorded
for 1.5 to 2.5 hours per session, –except for 1 session lasting approximately 1
hour and 2 sessions lasting about 30 minutes–. The recordings began long time
before the IPS session and were collected with an EEG cap with 19 electrodes
placed on the scalp following the 10–20 standardized system [15] as shown in
Fig.1. All recordings were visually analyzed by a clinical neurophysiologist, who
marked various phenomena depending on the case.

Fig. 1: Position of the 19 electrodes used according to the 10-20 international
standardized system. The Nasion is located at the centre of the frontonasal
area; the Inion is located at the centre of the back of the neck

On the one hand, the training dataset (Phot_Data) was built with the 9
photosensitive patients, captured at a sampling rate of 256Hz. After showing
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PPR activity during the IPS process, these patients were diagnosed with photo-
sensitivity. A total of 22 PPR discharges with durations in the range of 0.8–3.4
were identified and marked.

On the other hand, the testing dataset (NONPhot_Data) contained the data
from the 5 non-photosensitive patients, sampled at 128Hz. These patients did
not exhibit any PPR activity during the stimulation session. However, all other
anomalies of the EEG were marked, including electrode, muscular and ocular
artifacts, as well as random epileptiform discharges unrelated to PPR activity
or sleep waveforms.

Following the behind-the-ear EEG approach proposed in [11], the four most
relevant EEG channels for the PPR analysis based on clinical experience were se-
lected to create two pairs of cross-head channels: F3–F4 and O1–O2 –see Fig.1–.
The signals were preprocessed using a 6th-order Butterworth band-pass filter
(0.5–120Hz) and a Notch cut-off filter at 50Hz. The data were then segmented
into 1-second length windows with 90% overlapping. For both datasets, each
window was manually labeled based on the clinical marks using a binary sys-
tem: "PPR" or "non-PPR" in Phot_Data, distinguishing between PPR activity
and other brain activity that includes EEG anomalies; and "anomaly" or "not
anomaly" in NONPhot_Data, separating all EEG anomalies from normal brain
activity. The differences in sampling rate between both datasets made it nec-
essary to apply cubic spline interpolation in NONPhot_Data to increase the
number of samples per second up to 256 to match Phot_Data. The class pro-
portion in each dataset is as follows:

– Total Number of EEG windows in Phot_Data: 540,200.
• Number of non-PPR instances: 539,886 (99.94%).
• Number of PPR instances: 314 (0.06%).

– Total Number of EEG windows in NONPhot_Data: 290,721.
• Number of normal instances: 261,635 (90.00%).
• Number of EEG anomaly instances: 29,086 (10.00%).

2.2 Experimentation Setup

The Short-Time Fourier Transform algorithm was applied to each window to
extract frequency bands corresponding to brain rhythms: Delta (0.5–4 Hz), Theta
(4–8 Hz), Alpha (8–16 Hz), Beta (16–40 Hz), Gamma (40–80 Hz), and High-
Gamma (80–120 Hz). Then, the band power ratios were calculated for each band
across both cross-head channel pairs, resulting in 12 features per window. All
values were standardized (Mean = 0, Standard Deviation = 1) for each signal.

The architecture of the VAE model is presented in 2. The encoder receives
the input feature vectors and compresses them into a latent space represented
by a pair of vectors: mean and standard deviation. The decoder then samples
a value from this latent space and reconstructs the original input. Recurrent
layers using GRU cells are included before the encoder and the decoder to keep
track of the temporal dependencies between EEG windows. Moreover, a stack
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of normalizing flow layers is created between the encoder and the decoder to
perform contractions and expansions on the latent space, increasing its flexibility.

Training involves minimizing the difference between the original data and its
reconstruction. Both the encoder and decoder are preceded by an RNN-based
layer to capture temporal dependencies between consecutive instances. For AD
tasks, the model is trained solely on "normal" data, creating a "normal" latent
space. As a result, anomalous instances are expected to produce latent vectors
that deviate from the existing latent space, making the decoder unable to recon-
struct the original anomaly accurately and thus yielding higher reconstruction
errors.

Fig. 2: VAE model architecture: both encoder and decoder are preceded by a
GRU-based recurrent layer to consider the information from consecutive in-
stances over time, and normalizing flow layers are added in between to make
the latent space more flexible.

Each recording gathered in Phot_Data and NONPhot_Data was split into
two segments: the 1st hour –or the first 20 minutes for the shorter sessions–;
and the remaining data. The IPS sessions are located at the end of the second
segments, so the first ones only present non-PPR activity. In a previous study
[7], the VAE model was trained following a Leave-One-Subject-Out (LOSO)
cross-validation using the first segment from 8 patients and then tested with the
second segment of the remaining patient. In this research, the previously ob-
tained 9 models are now calibrated to each new non-photosensitive patient from
NONPhot_Data using the corresponding first segment and evaluated with the
second segment. For this purpose, the the EEG anomalies from NONPhot_Data
are considered as "non-PPR" instances following the same labeling system from
the training set from Phot_Data, thus a Positive instance is regarded as PPR
activity. The data segmentation and the experimentation workflow are shown in
3 and 4, respectively.

3 Results and Discussion

The results obtained by each Ki model trained with their corresponding training
sets from Phot_Data following LOSO, then calibrated and evaluated for each Pi
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Fig. 3: Segmentation of EEG recordings in both datasets: the first segment
presents only non-PPR data, while the second segment contains the IPS session.
The VAE model was previously trained with the first segments from Phot_Data
in [7], and now they are calibrated for each patient with their first segment and
evaluated with their second one.

Fig. 4: Experimentation workflow: the VAE model was trained using the training
segments from Phot_Data following the LOSO scheme, then calibrated for and
evaluated with each non-photosensitive patient from NONPhot_Data.
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non-photosensitive patient from NONPhot_Data for the PPR detection task are
gathered in Table 1. The metrics used for evaluating the detection performance
are Accuracy (ACC), Sensitivity (SENS) and Specificity (SPEC).

P1 P2 P3

Ki ACC SENS SPEC ACC SENS SPEC ACC SENS SPEC
K1 0.9287 0.0000 0.9287 0.9368 0.0000 0.9368 0.7498 0.0000 0.7498
K2 0.9287 0.0000 0.9287 0.9414 0.0000 0.9414 0.7025 0.0000 0.7025
K3 0.9274 0.0000 0.9274 0.9377 0.0000 0.9377 0.7499 0.0000 0.7499
K4 0.9288 0.0000 0.9288 0.9429 0.0000 0.9429 0.7010 0.0000 0.7010
K5 0.9284 0.0000 0.9284 0.9423 0.0000 0.9423 0.7140 0.0000 0.7140
K6 0.9181 0.0000 0.9181 0.9507 0.0000 0.9507 0.6828 0.0000 0.6828
K7 0.9248 0.0000 0.9248 0.9353 0.0000 0.9353 0.6920 0.0000 0.6920
K8 0.9271 0.0000 0.9271 0.9393 0.0000 0.9393 0.6934 0.0000 0.6934
K9 0.9255 0.0000 0.9255 0.9317 0.0000 0.9317 0.7152 0.0000 0.7152

Mean 0.9264 0.0000 0.9264 0.9388 0.0000 0.9397 0.7034 0.0000 0.7092
Median 0.9274 0.0000 0.9274 0.9393 0.0000 0.9393 0.7025 0.0000 0.7025

StD 0.0032 0.0000 0.0032 0.0035 0.0000 0.0050 0.0114 0.0000 0.0194
P4 P5

Ki ACC SENS SPEC ACC SENS SPEC

K1 0.9705 0.0000 0.9705 0.9173 0.0000 0.9173
K2 0.9723 0.0000 0.9723 0.9184 0.0000 0.9184
K3 0.9717 0.0000 0.9717 0.9167 0.0000 0.9167
K4 0.9701 0.0000 0.9701 0.9155 0.0000 0.9155
K5 0.9577 0.0000 0.9577 0.9173 0.0000 0.9173
K6 0.9726 0.0000 0.9726 0.9166 0.0000 0.9166
K7 0.9728 0.0000 0.9728 0.9179 0.0000 0.9179
K8 0.9698 0.0000 0.9698 0.9182 0.0000 0.9182
K9 0.9725 0.0000 0.9725 0.9161 0.0000 0.9161

Mean 0.9700 0.0000 0.9700 0.9171 0.0000 0.9171
Median 0.9717 0.0000 0.9717 0.9173 0.0000 0.9173

StD 0.0045 0.0000 0.0045 0.0009 0.0000 0.0009

Table 1: Results achieved by the 9 VAE models trained with LOSO in detecting
PPR discharges. Accuracy (ACC), Sensitivity (SENS), and Specificity (SPEC)
were obtained for each non-photosensitive patient, and Mean, Median, and Stan-
dard Deviation (StD) were computed for each metric.

Since NONPhot_Data contains no PPR activity, no instance should be la-
beled as positive. Therefore, the expected results for the PPR detection task are
0% SENS and ACC and SPEC values of 100%. However, the results reveal that
the VAE model detected PPR instances in non-photosensitive patients in the
form of False Positives. While the models achieved ACC and SPEC values be-
tween 90%–97% for most patients, they showed significantly lower performance
for patient 3, reaching only 70%. These results further support the previous hy-
pothesis that there are EEG anomalies that the VAE model can still distinguish.

When training the model with PPR instances as the sole type of anomaly,
it is expected that all False Positives in non-photosensitive patients correspond
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to EEG anomalies at least. To prove this hypothesis, a second experiment is
carried out: the prediction labels generated by each model are now compared to
the original NONPhot_Data labeling system ("anomaly" VS "non anomaly"),
so an EEG anomaly detection task where a Positive will correspond to an EEG
anomaly instead of PPR activity is executed. In this way, it is possible to deter-
mine if the models trained with a training set that presented no PPR activity
but multiple unlabeled EEG anomalies (Phot_Data) were still able to identify
them, affecting previous PPR detection performances. The results are presented
in Table 2.

P1 P2 P3

Ki ACC SENS SPEC ACC SENS SPEC ACC SENS SPEC
K1 0.9998 1.0000 0.9998 0.9936 1.0000 0.9933 0.9637 0.8769 0.9981
K2 0.9999 1.0000 0.9999 0.9982 1.0000 0.9981 0.9863 1.0000 0.9809
K3 0.9985 1.0000 0.9984 0.9945 1.0000 0.9942 0.9638 0.8769 0.9983
K4 0.9999 1.0000 0.9999 0.9995 1.0000 0.9994 0.9848 1.0000 0.9788
K5 0.9996 1.0000 0.9996 0.9991 1.0000 0.9991 0.9978 1.0000 0.9969
K6 0.9892 1.0000 0.9884 0.9901 0.8472 0.9987 0.9667 1.0000 0.9534
K7 0.9959 1.0000 0.9956 0.9921 1.0000 0.9916 0.9759 1.0000 0.9663
K8 0.9982 1.0000 0.9981 0.9961 1.0000 0.9958 0.9772 1.0000 0.9681
K9 0.9966 1.0000 0.9964 0.9885 1.0000 0.9878 0.9990 1.0000 0.9987

Mean 0.9975 1.0000 0.9973 0.9943 0.9830 0.9953 0.9795 0.9726 0.9822
Median 0.9985 1.0000 0.9984 0.9945 1.0000 0.9958 0.9772 1.0000 0.9829

StD 0.0032 0.0000 0.0035 0.0037 0.0480 0.0037 0.0128 0.0512 0.0159
P4 P5

Ki ACC SENS SPEC ACC SENS SPEC

K1 0.9969 1.0000 0.9968 0.9988 1.0000 0.9988
K2 0.9987 1.0000 0.9987 1.0000 1.0000 1.0000
K3 0.9981 1.0000 0.9980 0.9983 1.0000 0.9981
K4 0.9965 1.0000 0.9964 0.9971 1.0000 0.9968
K5 0.9840 1.0000 0.9836 0.9989 1.0000 0.9988
K6 0.9990 1.0000 0.9990 0.9982 1.0000 0.9980
K7 0.9992 1.0000 0.9992 0.9995 1.0000 0.9994
K8 0.9962 1.0000 0.9961 0.9998 1.0000 0.9997
K9 0.9989 1.0000 0.9989 0.9977 1.0000 0.9975

Mean 0.9964 1.0000 0.9963 0.9987 1.0000 0.9986
Median 0.9981 1.0000 0.9980 0.9989 1.0000 0.9988

StD 0.0045 0.0000 0.0046 0.0009 0.0000 0.0010

Table 2: Results achieved by the 9 VAE models trained with LOSO in detecting
EEG anomalies. Accuracy (ACC), Sensitivity (SENS), and Specificity (SPEC)
were obtained for each non-photosensitive patient, and Mean, Median, and Stan-
dard Deviation (StD) were computed for each metric.

Surprisingly, this second table shows that although the VAE model was not
trained for this purpose, it accurately identified all EEG anomalies present in
the EEG recordings, effectively distinguishing them from normal brain activity.
This was consistent across all trained instances, with a low number of false
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positives and achieving 100% SENS and 99% SPEC and ACC values. Further
analysis confirmed that Patient 3 exhibited a high number of EEG anomalies,
which greatly increased the number of False Positives found in the PPR detection
experiment, explaining the reduced ACC and SPEC values of 70%.

These results confirm that these unaccounted EEG anomalies negatively im-
pacted the performance achieved in our previous research, where only PPR
discharges were considered anomalies. Furthermore, despite being trained on
a dataset where the EEG anomalies were not labeled, the model still detected
them. This suggests that even without explicit labeling, these phenomena are
distinct enough to be recognized as anomalies among themselves. However, fur-
ther research is needed to ensure the correct and appropriate application of the
model for each of the evaluated tasks.

4 Conclusions

In this research, we proposed the use of VAE-based AD models trained and used
in our previous work [7] for the detection of EEG anomalies under the hypothesis
that these anomalies, often present in EEG recordings, were negatively affecting
the PPR detection performance of these models. Two datasets were used in this
study: the first one was used to train the models on "non-PPR" data from pho-
tosensitive patients without considering EEG anomalies, while the second was
used to verify if the models were able to detect those anomalies using recordings
from non-photosensitive data without PPR discharges at all but with all EEG
anomalies correctly labeled. Two cross-head channels were created and then di-
vided into overlapping windows. The power band ratio was calculated from the
frequency bands associated with the brain rhythms and extracted by applying
the Short-Time Fourier Transform. Following a Leave-One-Subject-Out scheme,
the VAE model was trained on "non-PPR" data from the first dataset, treat-
ing PPR as the sole anomaly. Then, each model instance was calibrated and
evaluated with each non-photosensitive recording.

The results gathered show that the VAE model with RNN layers, which was
trained with a dataset that did not distinguish EEG anomalies, can still perform
a high-precision detection of EEG anomalies. The findings highlight the negative
impact that ignored EEG anomalies had on earlier research.

Incorporating these additional labels into the validation of the models allows
us to assess their AD capabilities more precisely. Moreover, fully labeled EEG
recordings are needed for further research in multiclass models that distinguish
between all types of EEG anomalies or multilabeling classifiers that assign mul-
tiple labels to a single window with a certain degree of certainty. These insights
pave the way for the refinement of anomaly detection in EEG analysis, ultimately
enhancing diagnostic and clinical applicability.

For future work, refining the available dataset by improving the marks and
labels to include all possible EEG anomalies is essential for further research on
AD approaches in PPR activity or other epileptiform discharges. Since unsuper-
vised models were already tested in the previous study, future evaluations will
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also explore supervised and semi-supervised methods. Additionally, a multiclass
classification step could be incorporated after AD detection to recognize the dif-
ferent types and sources of EEG anomalies, as well as studying multilabeling
models that detect the anomalies and provide multiple labels at once.
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