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Abstract. Conventional deep-learning-based structural damage recognition us-

ing images usually requires well-designed network structures for various damage 

categories and complicated procedures of hyperparameter tuning and retraining. 

Recently, pre-trained large foundation models in unimodal of vision and multi-

modal of vision-language have been established to perceive fundamental 

knowledge of large-scale visual and linguistic datasets, which provides great po-

tential for structural damage diagnosis with full use of structural inspection im-

ages and texts. This study introduced a large model pipeline for structural damage 

diagnosis by establishing a large vision model for visual damage segmentation 

and a vision-language model for linguistic damage description towards intelligent 

structural inspection. First, a large vision model based on DINO was proposed 

via cross-level feature alignment and contrastive learning for universal structural 

damage segmentation. The recognition accuracy and model robustness were val-

idated by various types of structural components and surface damage for actual 

bridges and buildings. Then, a large vision-language model based on miniGPT-

v2 was developed via domain knowledge embedding and cross modal learning 

for multi-round dialogue of human-agent interaction to describe details of struc-

tural damage. The model capacity and generalization ability were further demon-

strated on several downstream tasks in vision-language cross modality of image 

captioning, visual question answering, and visual grounding. The results prelim-

inarily indicated the feasibility and effectiveness of the proposed large model 

paradigm for structural damage diagnosis. 

Keywords: Unsupervised Structural Damage Segmentation, Cross-level Fea-

ture Alignment, Contrastive Learning 

1 Introduction 

For bridges, it is of great significance to maintain operational durability, maintenance 

safety, and structural reliability during the entire service period. Timely detection and 

accurate recognition of multi-type surface damage is essential for maintenance decision 

making to mitigate the risk of potential structural failures. For past several decades, 

time-consuming and labor-intensive manual inspection has been adopted as the basic 

solution to detect structural damage, which faces severe limitations due to high 
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dependences on subjective experiences and lacking stability, reliability, and efficiency 

for real-world applications [1]. 

Computer vision has demonstrated its efficacy and efficiency in image-based struc-

tural health monitoring and damage recognition. Conventional digital image processing 

algorithms have been widely utilized to detect surface damage. However, the model 

performance heavily relies on manually selected parameters, including the type of edge 

detector, the sequence and number of image open and close operations, and the size of 

selected structural elements. Subsequently, machine-learning-based approaches are in-

troduced as intelligent solutions for extracting image features of structural damage and 

training the corresponding recognition models. However, hand-crafted features are re-

quired as well-chosen inputs, and the robustness under complex real-world background 

and generalization ability could not be guaranteed [2]. 

Deep learning has achieved significant progress in establishing end-to-end mapping 

between input image and object annotation as automatic multi-level feature extractors, 

in which convolutional neural networks (CNNs) are the most widely investigated [3-

5]. Generally, the CNN-based methods for structural damage recognition are often con-

fined to specific datasets that contain only one or few damage types and application 

scenarios. This limitation may compromise the generalization ability to new damage 

categories and disaster scenarios [6]. Additionally, they often require a substantial num-

ber of annotated images to obtain satisfactory model performance, which is inconsistent 

with the occasionality and sparsity of structural damage for certain real-world applica-

tions. Therefore, the recognition accuracy is significantly influenced by the quantity of 

labeled samples, inter-class balance, and the comprehensiveness of collected damage 

categories [7]. However, practical engineering applications always necessitate that the 

trained structural damage recognition model possesses a reasonable generalization ca-

pability across various scenarios while maintaining high accuracy on unlabeled images. 

To avoid training various deep networks on diverse datasets in a fragmented manner, it 

is essential to develop a universal, accurate, and stable vision recognition model for 

multi-type structural damage, which should be capable of effectively functioning under 

multi-scale real-world scenarios with complex background interferences [8]. 

Currently, unsupervised and self-supervised learning are cutting-edge techniques as 

potential approaches for autonomous structural damage detection, particularly in the 

context of small labeled datasets [9]. Although unsupervised semantic segmentation 

methods based on contrastive learning have begun investigations in the computer vision 

field, it is still challenging to establish a universal vision recognition model for pixel-

level structural damage segmentation tasks, especially for dealing with a large volume 

of unlabeled images under various real-world scenarios [10]. 

To address the above challenges, this study proposes a large vision model for uni-

versal structural damage segmentation. Section 2 introduces the network architecture 

of the proposed universal unsupervised damage segmentation model. Section 3 de-

scribes the investigated imageset of multi-scale multi-type structural components and 

surface damage. Section 4 presents a series of test results to demonstrate the effective-

ness, robustness, and generalization capability of the established model under real-

world inspection scenarios with complex background disturbances for cable-supported 

bridges and concrete bridges. Finally, Section 5 concludes this paper. 
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2 Methodology 

Figure 1 shows the overall schematic of the proposed model architecture for universal 

structural damage segmentation. Different from conventional supervised-learning-

based semantic segmentation models, this study establishes a knowledge distillation 

pipeline of teacher-student networks in an end-to-end unsupervised learning manner 

for the model training process. Each teacher and student branch comprises a data aug-

mentation module, a frozen visual backbone subnetwork based on transformer, a fine-

tuned segmentation head based on CNN in sequence. The self-supervised model updat-

ing strategy is designed based on a synthetical loss function of correlation loss and 

contrastive loss. Upon completion of the training process, new images are directely fed 

into the frozen visual backbone, the well-trained segmentation head, and a post-pro-

cessing module of semantic clustering to perform pixel-level segmentation of structural 

damage as the prediction phase. 

 

Fig. 1. Model architecture for universal unsupervised segmentation of structural damage. 

For each individual instance of input image, feature maps with the same dimensions 

of channel, height, and width are obtained before and after the segmentation head. For 

each branch of student and teacher networks, spatial points on feature maps before the 

segmentation head are noted as 𝑓𝑐ℎ𝑤 and 𝑔𝑐ℎ′𝑤′ , while spatial points on feature maps 

after the segmentation head are noted as 𝑠𝑐ℎ𝑤  and 𝑡𝑐ℎ′𝑤′ , respectively. The feature cor-

respondence 𝐹ℎ𝑤ℎ′𝑤′  between 𝑓𝑐ℎ𝑤  and 𝑔𝑐ℎ′𝑤′  and segmentation correspondence 

𝑆ℎ𝑤ℎ′𝑤′  between 𝑠𝑐ℎ𝑤  and 𝑡𝑐ℎ′𝑤′  are obtained by calculating the point-wise cosine 

similarity as 

 𝐹ℎ𝑤ℎ′𝑤′ =
∑ 𝑓𝑐ℎ𝑤×𝑔𝑐ℎ′𝑤′
𝐶
𝑐=1

‖𝒇ℎ𝑤‖2×‖𝒈ℎ′𝑤′‖2

, 𝑆ℎ𝑤ℎ′𝑤′ =
∑ 𝑠𝑐ℎ𝑤×𝑡𝑐ℎ′𝑤′
𝐶
𝑐=1

‖𝒔ℎ𝑤‖2×‖𝒕ℎ′𝑤′‖2

 (1) 

For N input images within an input batch, the feature correspondence tensors and 

segmentation correspondence tensors could be denoted as 𝐹1, … , 𝐹𝑁 ∈
ℛ𝐻×𝑊×𝐻×𝑊; 𝑆1, … , 𝑆𝑁 ∈ ℛ𝐻×𝑊×𝐻×𝑊 with four-dimensional elements of 𝐹ℎ𝑤ℎ′𝑤′  and 

𝑆ℎ𝑤ℎ′𝑤′ . The dense semantic correlation loss is calculated based on feature 

correspondence tensors and segmentation correspondence tensors by 
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 𝐹ℎ𝑤ℎ′𝑤′
𝑆𝐶 = 𝐹ℎ𝑤ℎ′𝑤′ −

1

𝐻𝑊
∑ 𝐹ℎ𝑤ℎ′𝑤′ℎ′,𝑤′ , (2) 

𝐿𝑐𝑜𝑟𝑟 = − ∑ (𝐹ℎ𝑤ℎ′𝑤′
𝑆𝐶 − 𝑏)𝑚𝑎𝑥(𝑆ℎ𝑤ℎ′𝑤′ , 0)

ℎ,𝑤,ℎ′,𝑤′

 

where 𝐹ℎ𝑤ℎ′𝑤′
𝑆𝐶  denotes the feature correspondence tensor after spatial centralization, b 

is a hyperparameter to avoid model collapse and ensure a positive correlation loss value. 

The contrastive loss between the teacher-student networks is defined as 

 𝐿𝑐𝑜𝑛𝑡 = −∑ 𝑙𝑜𝑔 {
𝑒𝑥𝑝[𝑆𝑖𝑚(𝑞𝑖,𝑘+)/𝜏]

∑ 𝑒𝑥𝑝[𝑆𝑖𝑚(𝑞𝑖,𝑘𝑗)/𝜏]
𝐾
𝑗=1

}𝑁
𝑖=1  (3) 

where Sim denotes the cosine similarity between two vectors, 𝑞𝑖 denotes the ith query 

feature vector obtained from the student branch for the ith image in a batch, 𝑘+ denotes 

the feature vector obtained from the teacher branch as the positive sample of the 

corresponding query image, N denotes the batch size, 𝑘𝑗  denotes the jth referenced 

feature vector in the feateure dictionary, K denotes the queue length of the preset feature 

dictionary, 𝜏 denotes a temperature hyperparameter. 

The synthetic loss function is defined by a weighted sum of correlation loss and 

contrastive loss as 

 𝐿𝑜𝑠𝑠 = 𝛼𝐿𝑐𝑜𝑟𝑟 + (1 − 𝛼)𝐿𝑐𝑜𝑛𝑡  (4) 

where 𝛼 denotes the weight coefficient of the correlation loss. 

3 Implementation Details 

This study focuses on the unsupervised semantic segmentation of universal multi-type 

structural damage images under real-world applications with complex background in-

terferences. A hierarchical structural damage imageset is constructed to include multi-

scale information of environment, structure, component, and damage. Some representa-

tive samples in the hierarchical structural damage imageset are shown in Figure 2. 

A total of 20K images with distinct resolutions are uniformly resized into a con-

sistent resolution of 1,024 × 1,024. Each resized image is cropped into 224 × 224 with 

a sliding window of 100 pixels to generate sufficient image patches instead of directly 

downsampling, avoiding possible feature leakage of minor damage. 128 image patches 

are randomly selected to form an input batch of the proposed method. 

The selection of training hyperparameters plays a vital role in ensuring the optimal 

model performance for deep learning. After several trials, the training hyperparameters 

are determined. Note that although the reported configurations might not be globally 

optimal, the trained large vision model for universal structural damage segmentation 

could obtain a satisfactory segmentation accuracy, good robustness to complex back-

ground, and generalization capacity under new scenes. Therefore, this study does not 

focus on the determination of the best hyperparameter setups and instead seeks to val-

idate the feasibility and effectiveness of the proposed large vision model for universal 

structural damage segmentation under real-world inspection scenarios. 
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Fig. 2. Representative images of hierarchical structural damage with multi-scale information. 

The proposed large vision model for universal structural damage segmentation is 

trained and tested under the software environment of PyTorch 1.8 and Python 3.7 on a 

48G GPU of NVIDIA RTX A6000, and the average training time with the reported 

hyperparameter configurations is about 48 hours to obtain a well-trained model. 

4 Results and Discussion 

Figure 3(a) shows some representative prediction results on coarse-grained segmenta-

tion of main bridge structures: (a) for cable-supported bridges and (b) for concrete 

bridges. The test PA, mIoU, and FWIoU are 97.17%, 91.47%, 94.64% for cable-sup-

port bridges and 92.72%, 82.46%, 86.98% for concrete bridges. The results show that 

main components of pylon, cable, girder, deck, and pier can be generally identified 

from entire images of bridge structures. Figure 3(b) shows some representative predic-

tion results on fine-grained segmentation of multi-type structural damage for bridges, 

including concrete crack, concrete spalling, rebar exposure, water seepage, saltpetering, 

steel fatigue crack, coating spalling, steel corrosion, and fire burning. Table 1 shows 

the evaluation metrics for multi-type structural damage segmentation of bridges. Addi-

tionally, it is observed that the proposed method can make clear distinctions between 

coupled damage of concrete spalling and rebar exposure, and it also successfully sepa-

rates severe corrosion regions from slight corrosion regions. 
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(a) coarse-grained segmentation of main bridge structures 

      

      

      

      

(b) fine-grained segmentation of multi-type structural damage 

Fig. 3. Representative segmentation results of multi-scale bridge structures and surface damage. 

Table 1. Evaluation metrics for multi-type structural damage segmentation of bridges. 

Bridge structural damage type PA mIoU FWIoU 

Concrete crack 96.19% 69.85% 93.35% 

Concrete spalling/rebar exposure 98.97% 74.12% 98.30% 

Water seepage/saltpetering 88.28% 75.15% 79.21% 

Steel fatigue crack 96.21% 68.07% 94.69% 

Coating spalling/steel corrosion 91.07% 75.39% 84.83% 

Fire burning 95.85% 76.22% 93.02% 

5 Conclusions 

This study proposes a universal unsupervised structural damage segmentation model in 

a self-supervised paradigm based on correlation learning and contrast learning to ad-

dress challenges of high dependences on sufficient, complete, and high-quality image-

annotation pairs of fragmented recognition models by conventional supervised learn-

ing. The main conclusions are obtained as follows: 

(1) A unified semantic segmentation architecture for multi-type structural compo-

nents and surface damage is established following a knowledge distillation pipeline of 

teacher-student networks. 

(2) Unlabelled image pairs after random data augmentation are utilized as inputs. 

correlation learning strategy between high-level feature maps of frozen backbone 
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network and dense segmentation maps of fine-tuned segmentation head is introduced 

to ensure the cross-level feature alignment of various component and damage regions 

inside each image. A contrastive learning module between the normalized aggregated 

feature vectors across student and teacher branches is employed to quantify the intra-

instance similarity and inter-instance separability among different images. 

(3) A synthetic loss function comprising a correlation loss and a contrastive loss is 

designed. A multi-scale image dataset of multi-type components and damage for vari-

ous bridge structures is constructed. Comparative studies validate the segmentation ac-

curacy, generalization ability, and robustness under complex background disturbances. 
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