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Abstract. Track geometry irregularity deterioration is a key factor affecting 

railway operation safety, and its accurate prediction is of great significance for 

guiding maintenance departments in scientifically formulating maintenance 

plans. The short-term prediction of track geometry irregularity deterioration faces 

three main challenges. These include coordinated analysis of multiple 

parameters, handling non-fixed detection intervals, and extracting spatiotemporal 

features. This study proposes a CNN-BiLSTM-Attention-based method for 

short-term prediction of track geometry irregularity deterioration. The method 

addresses parameter coupling effects via a coordinated modeling framework of 

key parameters, captures non-fixed detection interval features using a time-aware 

attention mechanism, and enhances spatiotemporal feature analysis by 

combining CNN spatial feature extraction with BiLSTM temporal modeling. 

The study selected a 47.6 km section of China's Jin-Shan Line and validated the 

method using 21 months of track geometry cars data. Results indicate that the R² 

values for track cross level attained 0.993, with MAPE for all parameters 

maintained within 5%, demonstrating quantifiable improvement in evaluation 

metrics compared to baseline models. The research results can provide technical 

support for railway maintenance departments to monitor track conditions and 

optimize maintenance plans. 
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1 Introduction 

The railway transportation system, recognized as one of the most sustainable 

transportation infrastructures globally, serves as a fundamental pillar in national 

economic development. Track geometry undergoes progressive deterioration due to 

multifaceted factors, with resultant deviations impacting safety and comfort [1]. 

Industry analytics [2] indicate the global railway sector allocates over $32 billion 

annually toward track maintenance. To ensure safe operations while controlling costs, 

railway departments are shifting toward condition-based proactive maintenance, 

requiring high-frequency detection. Railway practitioners use Track Geometry Cars 

(TGC) for inspections [3], but due to high costs, inspection intervals are long—twice 

monthly in China, while Dutch lines are inspected biannually [4]. Under existing 

detection conditions, studying deterioration patterns and predicting development trends 

has practical significance for maintenance strategies, optimizing costs, and ensuring 

safety [5,6]. 

In addressing the critical challenge of track geometry irregularity deterioration 

prediction, contemporary research frequently employs composite indicators such as 

Track Quality Index (TQI) or Track Geometry Index (TGI) for quantitative assessment 

of track geometry conditions. These comprehensive metrics synthesize multiple 

fundamental parameters, including left/right longitudinal level (left/right LL), left/right 

alignment, rail gauge, track cross level, and twist parameters. Empirical investigations 

have established that each constituent parameter independently contributes significant 

diagnostic value to overall track condition assessment [7], necessitating multivariate 

modeling approaches. Track geometry deterioration prediction methods can be broadly 

classified into traditional models and machine learning models [8]. Traditional models 

include statistical regression models and stochastic process models. Hamid [9] used a 

stepwise regression model to predict TQI, Chang et al. [10] established personalized 

multi-stage linear models of track geometry state deterioration for each section to 

predict TQI, and An et al. [11] proposed an improved track geometry deterioration 

model using Weibull distribution to accurately estimate the tamping cycle for each track 

section. Quiroga and Schnieder [12] evaluated the probability distribution of 

deterioration through Monte Carlo simulation. However, in engineering practice, track 

geometry irregularity deterioration is essentially a complex spatiotemporal process 

driven by multiple parameter coupling and heterogeneous factors (traffic loads, 

environmental conditions, line geometric features) [13]. Existing research indicates that 

traditional models still have room for further optimization when dealing with multi-

source heterogeneous factors and their non-linear relationships [14]. 

With advances in computer science, machine learning-based prediction techniques 

have been widely applied in the field of track engineering [15]. Research progress is 

mainly reflected in two levels: At the traditional machine learning level, scholars have 

successively proposed TQI prediction accuracy improvement methods integrating grey 

model GM(1,1) with probabilistic support vector machine (PSVM) [16], and random 

forest algorithms applied to rail gauge prediction [17]. Additionally, to address data 

imbalance issues, Wang et al. [18] employed data oversampling techniques and gradient 

boosting methods to predict geometric defect occurrence rates. In terms of deep 



learning methods, existing research includes spatiotemporal neural network models for 

rail break prediction based on ResNet-Transformer architecture [19], deep learning 

systems for rail surface defect prediction and track quality assessment [20], and deep 

learning methods extended to turnout detection [21]. Notably, Han et al. [4] achieved 

long-term prediction of longitudinal level irregularities, while the CNN-LSTM model 

proposed by Wang et al. [13] significantly improved track geometry parameter 

prediction performance through spatiotemporal feature extraction. 

Liu et al. [22] indicated that there are certain differences between track geometry 

irregularity detection data and the data requirements for machine learning: on one hand, 

the relatively large sampling intervals result in a limited total number of samples. On 

the other hand, the detection data exhibits a degree of temporal non-uniformity, which 

does not fully align with the characteristics of large-scale and uniformly sampled data 

typically required by conventional machine learning methods. For processing non-

equidistant time series data, researchers have proposed various approaches, including 

weight conversion methods based on decay functions [23], direct prediction models 

using improved gated recurrent units [24], and time-aware LSTM architectures 

specifically designed to handle irregular intervals [25]. Notably, CNN-BiLSTM models 

that combine CNN's feature extraction capabilities with BiLSTM's time series 

modeling advantages have demonstrated promising performance in multiple fields, 

including bearing fault diagnosis [26], power load forecasting [27], residential 

electricity consumption prediction [28], and sea level height prediction [29]. 

Based on these findings, we propose a time-aware CNN-BiLSTM-Attention 

model for short-term track geometry deterioration prediction. This approach aims to 

overcome limitations in existing research, such as focusing on single parameters, 

ignoring coupling effects between parameters, assuming track inspection data as 

equally-spaced time sampling, and neglecting non-equidistant detection characteristics. 

The main contributions of this method are as follows: 

(1) Construction of a joint prediction framework for seven key parameters, 

achieving coordinated modeling of these parameters through feature sharing 

mechanisms and parameter-specific prediction layers. 

(2) Proposal of a non-equidistant sequence modeling method based on time-aware 

attention mechanisms, enhancing the model's adaptability to irregular time intervals in 

track detection data. 

(3) Application of a combined CNN and BiLSTM structure to process track 

geometry irregularity data, providing empirical research for deep learning applications 

in this field. 

The structure of this study is arranged as follows: The second section elaborates 

on the short-term prediction problem of track geometry irregularity deterioration. The 

third section details implementation details of the prediction method. The fourth section 

provides validation using the Jin-Shan Line engineering case, and the fifth section 

summarizes the research findings and discusses prospects for engineering applications. 



2 Problem Description 

This research focuses on the short-term prediction problem of track geometry 

irregularity deterioration. Within China's railway maintenance protocols, track 

infrastructure is systematically segmented into standardized 200-meter sections, as 

illustrated in Fig. 1. For any track section i  ( 1,2,...,i N=  )at time point
jt  , the track 

geometry irregularity state vector can be represented as a seven-dimensional vector: 

 
7( ) [ ( ), ( ), ( ), ( ), ( ), ( ), ( )]T

i j l j r l j r j j j jX t h t h t a t a t l t g t d t=    (1) 

Where ( ), ( )l j r jh t h t  represents left/right LL, ( ), ( )l j r ja t a t  represents left/right 

alignment, ( )jl t  represents track cross level, ( )g t  represents rail gauge, and ( )jd t  

represents twist. The lower half timeline of Fig. 1 shows the observational data 

characteristics of a typical track section in the time window 
1 2{ , ,..., }nT t t t= : (1) Non-

equidistant sampling characteristics, with adjacent detection intervals 1j j jt t t+ = −  

showing significant time-varying properties, ranging from days to months. (2) Dynamic 

evolution complexity: the seven parameter sequences exhibit coupled associations and 

differentiated evolution patterns. Based on the above analysis, given the historical 

observation sequence 1{ ( ), }n

i j j jX t t =  as model input, the prediction target is the track 

geometry state at the next detection time, which can be expressed as the mapping:  

 1 1{ ( ),..., ( ) ( )}i j n i j i jX t X t X t− + +→
 (2) 

 Where the time interval jt  needs to satisfy ~j traint   (distribution of 

historical observation sequence intervals). 

 

Fig. 1.  Track geometry irregularity deterioration prediction problem 



3 Methodology 

3.1 CNN Feature Extraction Module 

This research introduces a comprehensive multi-task learning architecture predicated 

on a CNN-BiLSTM-Attention model for the concurrent prediction of seven track 

geometry irregularity parameters, as depicted in Fig. 2. The framework implements a 

hard parameter sharing paradigm, comprising a unified feature extraction backbone 

network coupled with multiple task-specific prediction modules. The CNN-BiLSTM-

Attention architecture, functioning as the shared feature encoder, extracts generalizable 

latent representations from historical temporal sequences, thereby capturing inherent 

cross-parameter correlations and dependencies among the seven geometric parameters; 

the specialized prediction heads subsequently generate parameter-specific forecasts 

aligned with the distinctive evolutionary characteristics of each geometric indicator. 

 

Fig. 2. Multi-task prediction framework for track geometry irregularity deterioration 



 

Fig. 3. Hierarchical training strategy for the multi-task learning framework 

3.2 CNN-BiLSTM-Attention Model 

The multi-task learning framework implemented in this study leverages a CNN-

BiLSTM-Attention architecture as its foundational feature extraction mechanism, 

facilitating the collaborative representation learning of interdependent track geometry 

irregularity parameters. This hybrid neural architecture effectively captures complex 

spatiotemporal patterns and long-range temporal dependencies inherent in track 

geometry parameter evolution through the synergistic integration of convolutional 

neural networks for spatial feature extraction, bidirectional long short-term memory 

networks for temporal sequence modeling, and time-aware attention mechanisms for 

adaptive temporal weighting, as illustrated in Fig. 4. 



 

Fig. 4. CNN-BiLSTM-Attention 

CNN Feature Extraction Module. A one-dimensional convolutional neural network is 

employed for local feature extraction, performing feature transformation on the input 

sequence through sliding convolution windows, effectively identifying local patterns 

and spatial correlations in track geometry parameters. The convolution operation can 

be represented as: 

 
( 1 ( )conv inputF ReLu Conv D X=

 (3) 

Where, 
inputX   represents the input time series features, 1Conv D   denotes the 

one-dimensional convolution operation, and ReLU  is the activation function. 

 Bidirectional LSTM Network. Based on the features extracted by CNN, a 

bidirectional LSTM network is applied to capture long-term temporal dependencies. 

The bidirectional structure enables the model to utilize both historical and future 

contextual information simultaneously. The output of BiLSTM can be expressed as:  

 
( )bilstm convH BiLSTM F=

 (4) 



 where integrates the BiLSTM   outputs from both forward and backward 

directions, and contains the hidden states for each time step. 

 Time-Aware Attention Mechanism (TAAM). To address the issue of irregular 

intervals in track inspection data collection, the model introduces TAAM. This 

mechanism transforms time interval information into attention weight adjustment 

factors: 

 | |ij i jt t t = −
 (5) 

 
( / )timew exp t = −

 (6) 
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j
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Where, 
ijt  is the interval matrix between time points,   is a learnable time 

scale parameter, Q  , K  and V  are the query, key, and value matrices respectively, 

represents the attention weights after time adjustment, and is the final output with 

residual connections added.  

Mean Absolute Error (MAE) is adopted as the primary objective function due to 

its robustness against outlier observations and L1 regularization properties, 

characteristics particularly advantageous for track geometry parameter prediction 

where measurement anomalies may occasionally manifest in inspection data.  
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The overall loss for the multi-task framework is a weighted sum of task losses: 

 1

M
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m

L w L
=
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 Where, 
mw  is the weight for task m  , with equal weights adopted in this 

research. 

4 Case Study 

This investigation selects a 47.6-kilometer segment spanning from K193 to K240+600 

of the Jin-Shan railway line under the jurisdiction of Beijing Railway Bureau as the 

experimental domain, systematically partitioned into standardized unit sections of 200 

meters each. The dataset encompasses comprehensive track inspection records and 



maintenance intervention data spanning the period from March 2023 to October 2024. 

The maintenance documentation incorporates temporal timestamps, spatial coordinates, 

and intervention methodologies, thereby providing the predictive model with authentic 

maintenance event information that enhances prediction fidelity and alignment with 

operational engineering practices. Through Pearson correlation analysis, different 

degrees of correlation between parameters were found: the correlation coefficient 

between left/right LL and alignment parameters is 0.59, and the correlation coefficient 

between rail gauge and twist parameters is 0.68 (as shown in Fig. 5). This correlation 

indicates that there are interactions among various geometric parameters, while each 

parameter also exhibits different distribution characteristics, which poses requirements 

for the multi-parameter prediction capability of the model. 

 

Fig. 5. Heatmap of correlation among track geometry irregularity 

In the experimental process, data was indexed according to unit section numbers and 

was randomly divided into 70% training set and 30% validation set; key 

hyperparameters of the CNN-BiLSTM-Attention model are determined through 

optimization algorithms until the loss function converges; historical data is used to 

predict the track geometry state of the target month, which is then compared with actual 

detection data to evaluate the model's prediction performance. 

4.1 Model Performance Analysis 

To systematically evaluate predictive performance metrics and identify the optimal 

architectural configuration, this investigation conducted a comprehensive comparative 

analysis of state-of-the-art deep learning architectures within the single-task prediction 

paradigm, including CNN-BiLSTM hybrid networks, Deep Neural Networks (DNN), 

and Bidirectional Temporal Convolutional Networks (BiTCN). Throughout the model 

benchmarking process, the Optuna hyperparameter optimization framework was 

employed for automated hyperparameter tuning across all architectural variants to 

ensure methodological consistency and comparative validity. All models used the same 

L1 loss function as the optimization objective and employed consistent training, 



validation, and test dataset division schemes. Through hyperparameter optimization 

techniques, the optimal configuration of the CNN-BiLSTM-Attention model proposed 

in this study was determined, with Table 1 showing the results of the hyperparameter 

optimization experiments. 

Table 1. Hyperparameter Optimization Results 

Parameter Category Parameter Optimized Value 

Model Structure Hidden Layer Dimension 192 
 Number of LSTM Layers 1 
 Convolution Kernel Size 5 
 Dropout Rate 0.34 

Optimizer Learning Rate 0.0001 
 Weight Decay 0.002 

Table 2 shows the performance comparison of four deep learning models in predicting 

seven track geometry parameters, evaluated through four metrics: RMSE, MAE, 

MAPE, and R². The results indicate that the CNN-BiLSTM-Attention model performs 

best overall, achieving the lowest errors and highest R² values for most parameters, 

particularly in left rail longitudinal level prediction with an RMSE of 0.067 and R² of 

0.947. CNN-BiLSTM ranks second, while BiTCN and DNN also perform well on 

certain specific parameters. Although the DNN model ranks lower overall, it performs 

excellently in track gauge prediction (R² 0.970), approaching the level of the optimal 

model. These results demonstrate the effectiveness of the attention mechanism in 

improving prediction accuracy and indicate that model selection should be based on 

specific prediction tasks. 

Table 2. Model comparison results table 

 CNN-BiLSTM-Attention CNN-BiLSTM 

 RMSE MAE MAPE R2 RMSE MAE MAPE R2 

Left LL 0.067 0.048 4.69% 0.947 0.070 0.050 4.95% 0.941 

Right LL 0.080 0.058 5.72% 0.940 0.083 0.060 5.94% 0.935 

Left Alignment 0.064 0.044 6.16% 0.941 0.068 0.048 7.18% 0.932 

Right Alignment 0.069 0.044 5.89% 0.925 0.080 0.054 7.61% 0.901 

Rail Gage 0.065 0.040 3.79% 0.970 0.079 0.049 4.90% 0.956 

Track Cross 

Level 
0.075 0.049 6.42% 0.954 0.074 0.053 8.10% 0.955 

Twist 0.061 0.042 4.97% 0.977 0.065 0.048 6.51% 0.973 

 BiTCN DNN 

 RMSE MAE MAPE R2 RMSE MAE MAPE R2 

Left LL 0.079 0.054 5.16% 0.924 0.075 0.056 5.65% 0.932 

Right LL 0.094 0.065 6.18% 0.916 0.090 0.066 6.49% 0.922 

Left Alignment 0.074 0.050 7.08% 0.921 0.066 0.047 6.99% 0.937 

Right Alignment 0.081 0.051 6.69% 0.897 0.069 0.046 6.35% 0.925 



Rail Gage 0.074 0.043 4.16% 0.962 0.066 0.045 4.44% 0.970 

Track Cross 

Level 
0.079 0.050 6.72% 0.949 0.075 0.053 7.98% 0.954 

Twist 0.065 0.043 5.13% 0.973 0.067 0.050 6.81% 0.971 

To empirically validate the efficacy of the proposed multi-task learning paradigm 

against conventional single-task modeling approaches, this study executed a series of 

controlled ablation experiments while maintaining architectural consistency and 

optimizing for identical convergence criteria. Table 3 shows that models using the 

multi-task learning framework demonstrate superior performance on all tasks. Based 

on correlation analysis between different parameters in the dataset, the track geometry 

irregularity deterioration prediction tasks were divided into three groups: Task 1 for 

Left/Right LL, Task 2 for Left/Right Alignment, and Task 3 for the remaining 3 

parameters. Specifically, the RMSE, MAE, and MAPE values under the multi-task 

framework are generally lower, especially in Track Cross Level and Right Alignment 

tasks, where RMSE and MAE are significantly reduced and MAPE is effectively 

improved. Additionally, R² values are enhanced in most tasks under the multi-task 

framework, particularly in Left Alignment and Twist tasks, where the improvement in 

R² values is more significant. These comparisons indicate that the multi-task learning 

framework can effectively share feature information between tasks, thereby enhancing 

prediction accuracy and model generalization ability for each task. Overall, the 

experimental results support the effectiveness of multi-task learning in improving 

model performance, reducing training errors, and enhancing prediction accuracy. 

Table 3. Multi-task framework comparison results table 

 Single-task Learning Framework Multi-task Learning Framework 

 RMSE MAE RMSE MAE RMSE MAE MAPE R2 

Left LL 0.067 0.048 0.067 0.048 0.052 0.037 4.01% 0.964 

Right LL 0.080 0.058 0.080 0.058 0.069 0.047 4.52% 0.953 

Left Alignment 0.064 0.044 0.064 0.044 0.041 0.029 4.18% 0.971 

Right Alignment 0.069 0.044 0.069 0.044 0.032 0.023 3.37% 0.981 

Rail Gage 0.065 0.040 0.065 0.040 0.051 0.036 3.74% 0.981 

Track Cross 

Level 
0.075 0.049 0.075 0.049 0.027 0.018 2.30% 0.993 

Twist 0.061 0.042 0.061 0.042 0.035 0.024 2.67% 0.992 

As shown in Fig. 6, the proposed hierarchical multi-task learning model exhibits 

distinct phase characteristics during the training process. The backbone network 

training phase demonstrates good convergence properties, with loss values decreasing 

from 1.4 to 0.2, validating the applicability of the CNN-BiLSTM-Attention hybrid 

architecture in time series feature extraction. The training curves of the three task heads 

display differentiated characteristics: the training and testing losses for Task 1 and Task 

2 show insignificant downward trends, while the loss value for Task 3 stabilizes at 0.08. 

Experimental data indicate that the performance of each task on the test set is close to 



that on the training set, confirming the model's generalization performance. 

 

Fig. 6. Track geometry irregularity deterioration prediction loss 

 

Fig. 7. Track geometry irregularity deterioration prediction fitting 

Fig. 7 displays the prediction results of the CNN-BiLSTM-Attention multi-task model 

on the validation set of the Jin-Shan line, presenting a comparison between actual 

values (blue) and predicted values (red) for seven key track geometry parameters. The 

model predictions highly align with actual measurements, accurately capturing the peak 

and valley features of each parameter, which is crucial for identifying potential track 



geometry anomalies. Different parameters exhibit various change patterns: Left/Right 

Longitudinal Level shows larger amplitude fluctuations; Left/Right Alignment displays 

significant peaks in multiple locations; Track Cross Level, Rail Gage, and Twist are 

relatively stable but with local mutations. Notably, the model maintains good prediction 

accuracy even in areas where data exhibits nonlinearity and sudden changes. 

4.2 Experimental Results 

The proposed predictive framework demonstrates dual capabilities in forecasting 

deterioration trajectories and quantifying the ameliorative effects of maintenance 

interventions on track geometric conditions. Analyzing inspection and maintenance 

records from a representative 6-kilometer segment, with Left/Right Longitudinal Level 

(LL) parameters serving as primary analytical indicators, as visualized in Fig. 8, the 

post-maintenance effects following the April 2024 intervention are clearly observable 

through significant amplitude reduction in both Left/Right LL parameters, 

accompanied by a measurable deceleration in deterioration rates, as evidenced by the 

gradient transitions in the spatiotemporal heatmap visualization. This indicates that the 

model can learn the impact of maintenance interventions, providing a basis for 

evaluating the effectiveness of maintenance measures. By comparing the actual post-

maintenance track condition with the predicted results, the rationality of maintenance 

decisions can be verified, and data support can be provided for the optimization of 

subsequent maintenance strategies. 

 

Fig. 8. Spatiotemporal distribution heat map of Left/Right LL before and after maintenance 

5 Conclusion and Discussion 

This research introduces a novel multi-task CNN-BiLSTM-Attention framework for 

short-term track geometry irregularity deterioration prediction within railway systems. 



Empirical validation utilizing operational engineering data from China's Jin-Shan 

railway corridor demonstrates that the proposed multivariate parameter modeling 

approach exhibits enhanced congruence with the underlying physical deterioration 

mechanisms of track infrastructure compared to conventional univariate methodologies. 

The time-aware mechanism enables the model to learn the distribution patterns of non-

equidistant inspection data, enhancing the modeling capability for irregular time series. 

Comparative experiments confirm that CNN-BiLSTM-Attention demonstrates 

advantages in predicting key parameters compared to existing time series prediction 

models. 

Notwithstanding the methodological advancements presented in this investigation, 

certain limitations warrant acknowledgment. The current research utilizes a 21-month 

monitoring dataset, representing a temporal window that remains relatively constrained 

when contextualized within the comprehensive lifecycle of railway track infrastructure. 

The predictive framework primarily addresses near-term state forecasting for 

subsequent inspection intervals, with limited extension to long-horizon deterioration 

trajectory analysis across extended temporal domains. Future research can be 

conducted in the following aspects: first, expanding the scope of data collection for 

long-term monitoring of the line; second, studying in depth the interaction mechanisms 

between various geometric parameters to further enhance the model's ability to capture 

the coupling effects of multiple parameters. Overall, the method proposed in this study 

provides a feasible solution for short-term prediction of track geometry irregularities. 

Its attempts in collaborative modeling of multiple parameters and processing of non-

equidistant time series provide a reference for research in related fields and are expected 

to provide technical support for the daily maintenance work of railway engineering 

departments. 
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