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Abstract. Breast cancer remains one of the leading causes of mortal-
ity among women, making early detection and accurate diagnosis es-
sential. Magnetic resonance imaging (MRI) plays a key role in this, of-
fering detailed insights into tumor characteristics. However, manual tu-
mor segmentation is labor-intensive and prone to variability, prompting
the exploration of automated deep learning techniques. These methods
hold promise for improving diagnostic precision, treatment planning, and
monitoring therapeutic response.
In this study, the performance of 2D and 3D deep learning techniques
for breast tumor segmentation on diffusion-weighted MRI (DW-MRI)
is evaluated. Although 3D techniques are widely regarded as superior,
this assumption may not hold in the context of DW-MRI due to specific
limitations. Breast tissue is highly heterogeneous, complicating segmen-
tation. The 4mm gap between DW-MRI slices hampers volumetric re-
construction, and the high sensitivity of DW imaging to water diffusion
leads to poor anatomical continuity between slices, further complicating
3D segmentation.
DW-MRI remains underutilized compared to dynamic contrast-enhanced
MRI (DCE-MRI), yet it offers key advantages for patients unable to
receive contrast agents, being faster, safer, and more cost-effective. This
study focuses on DW-MRI and its associated ADC maps, which provide
valuable information about tissue characteristics.
Extensive experiments on a diverse clinical dataset reveal that, contrary
to common assumptions, 2D segmentation models outperform 3D ap-
proaches in DW-MRI, suggesting a reconsideration of 3D methods in
this context.

Keywords: Breast cancer· tumor segmentation· deep learning· U-Net·
DW-MRI

1 Introduction

Cancer remains one of the leading causes of global mortality [24], with breast cancer
being the most commonly diagnosed cancer among women worldwide. Recent estimates
indicate approximately 2.3 million new cases of breast cancer are diagnosed annually
[30]. Breast cancer refers to the uncontrolled proliferation of malignant cells within
the breast tissue, often forming a tumor that can invade surrounding structures and
metastasize to distant organs.

Early detection and monitoring are crucial for effective treatment, with Magnetic
Resonance Imaging (MRI) playing a key role [8]. Among MRI techniques, Dynamic
Contrast-Enhanced MRI (DCE-MRI) is widely used for its ability to enhance blood
flow visualization, which is often irregular in malignant tumors [18]. However, despite
its diagnostic advantages, DCE-MRI has limitations, including the need for contrast
agents that can cause allergic reactions, high costs, and complex post-processing [27].
As a result, Diffusion-Weighted MRI (DW-MRI) has emerged as a viable alternative for
breast cancer imaging, especially in patients for whom contrast administration is con-
traindicated. Unlike DCE-MRI, DW-MRI does not require contrast agents but instead
measures water molecule diffusion, making it a safer and more accessible imaging option
[2]. In DW-MRI studies, pixel intensity values vary with different b-values. Apparent
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Diffusion Coefficient (ADC) maps are a derivate of DW-MRI, which integrate multiple
b-values to provide quantitative insights into tissue characteristics by measuring water
diffusion [14].

Recent advancements in Deep Learning (DL) have significantly improved medical
imaging, particularly in computer vision applications [25]. Convolutional neural net-
works (CNNs) have become a preferred approach for medical image analysis [17], with
semantic segmentation playing a crucial role in pixel-wise classification tasks.

Applying deep learning-based semantic segmentation to ADC maps has the poten-
tial to assist radiologists in breast cancer diagnosis, treatment planning, and longitu-
dinal monitoring. However, segmentation approaches vary. While 3D techniques are
often considered superior [26] [12], breast tissue heterogeneity poses challenges [20].
Additionally, the 1 cm gap between MRI slices can hinder accurate 3D volume re-
construction, and DW imaging’s sensitivity to water movement may not consistently
capture anatomical structures across slices [11]. Therefore, it is crucial to evaluate
whether the added complexity of 3D deep learning models is justified in the context of
DW-MRI, where technical and biological constraints may limit their effectiveness.

The remainder of this paper is structured as follows: Section 2 reviews state-of-the-
art computer vision techniques in medical imaging; Section 3 details dataset prepara-
tion, model architecture, and experimental methodology; Section 4 presents and dis-
cusses the results; and Section 5 concludes and presents potential directions for future
research.

2 Background

Convolutional neural networks (CNNs) have revolutionized computer vision in recent
years, with [16] establishing their superiority over traditional hand-crafted feature
methods in image classification tasks. In biomedical image segmentation, the U-Net
architecture [22] has become a foundational model, widely adopted for pixel-wise se-
mantic segmentation due to its encoder–decoder structure and skip connections. These
foundational models inform our approach; to contextualize our contribution, we review
recent advances in both 2D and 3D segmentation methods specifically applied to breast
cancer imaging.

We first review 2D segmentation approaches, which remain widely used due to their
reduced computational complexity and compatibility with slice-based annotations. In
2D segmentation, [3] applied DeepLab and Mask R-CNN to segment malignant and
benign cancer regions. [15] employed a U-Net to segment regions of interest in ultra-
sound images of breast cancer patients. Using ResNet50 within the DeepLab framework,
[23] achieved strong segmentation metrics, though their study focused on the well-
established dynamic contrast-enhanced MRI (DCE-MRI). [4] introduced Connected-
UNets, a U-Net modification designed to enhance contextual information within the
encoder-decoder architecture for breast cancer segmentation. Additionally, [5] lever-
aged fuzzy logic for pre-processing, significantly improving tumor segmentation across
multiple CNN models. A different approach was taken by [7], who utilized Mask R-CNN
for breast cancer detection, classification, and segmentation in thermal images.

We then discuss 3D approaches, which aim to capture volumetric context but pose
greater challenges in clinical settings. In 3D segmentation, [21] trained multiple CNN
models for the 3D semantic segmentation of breast cancer. [29] adopted a different strat-
egy, using a U-Net for multi-class segmentation to reconstruct breast tissue. Meanwhile,
[9] performed 3D multi-class semantic segmentation on ultrasound images, aiming to
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enhance interpretability. Additionally, [13] conducted an extensive study using multi-
ple patient datasets and 3D architectures, determining that a 3D U-Net with dynamic
contrast-enhanced input yielded the best results.

3 Materials and Methods

A robust dataset is essential to ensure a fair and meaningful comparison between 2D
and 3D segmentation models, particularly when dealing with clinical data variabil-
ity. The dataset chosen is ACRIN 6698 [1], a multi-center study designed to evaluate
the effectiveness of quantitative Diffusion-Weighted Imaging in assessing breast cancer
response to neoadjuvant chemotherapy (NAC). ACRIN 6698 provides, among other
data, diffusion-weighted magnetic resonance images of 406 breast cancer patients. Ad-
ditionally, it includes ADC maps derived from these DW-MRIs. Furthermore, despite
manual annotation of different classes being a highly time-consuming process, ACRIN
6698 also features expert-labeled segmentation masks for both the DW-MRIs and ADC
maps.

The raw dataset requires preprocessing to be suitable for convolutional neural net-
work training, as the original format lacks consistency in volume structure and intensity
distribution. Therefore, a pre-processing pipeline is implemented to prepare the data.
First, the ADC maps for each patient study are paired with their corresponding seg-
mentation masks. Next, 3D volumes are constructed from the 2D slices of both ADC
maps and masks followed by intensity normalization using contrast stretching, which
enhances the visibility of tumor regions by adjusting dynamic range. Finally, a zoom
operation is performed on all volumes to focus on the region of interest, ensuring a
standardized shape of 16×64×64 (16 slices of 64×64 per study).

As discussed in the background section, U-Net has become a standard in biomed-
ical semantic segmentation. This research evaluates and compares the performance of
2D and 3D U-Net models. Our model architecture follows the original U-Net design,
using an encoder path that captures contextual information through convolutional and
pooling layers and a decoder path that enables precise localization using transposed
convolutions. Skip connections link corresponding encoder and decoder layers to pre-
serve spatial information lost during downsampling [22].

A 5-fold cross-validation strategy is adopted to ensure statistical robustness. The
2D model is trained for 50 epochs, while the 3D model undergoes 70 epochs due to its
higher parameter complexity. For each fold, the dataset is split into 60% for training,
20% for validation, and 20% for testing. The 3D U-Net model is trained using the pre-
processed 3D volumes, while the 2D U-Net model is trained using the same volumes,
split into individual 64×64 2D slices.

Since the primary objective of this research is to evaluate both models’ performance
in tumor segmentation, several metrics are employed: Dice-Sørensen coefficient, accu-
racy, recall, specificity, precision, and Jaccard Index (IoU). These metrics were selected
based on their widespread adoption in medical image segmentation studies and their
ability to capture different aspects of model performance [28] [19].

4 Results and Discussion

Table 1 summarizes the performance metrics for both models across the test folds,
providing a comparative view of their segmentation capabilities. For each fold of both
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models, accuracy, recall, Dice score, IoU, specificity, and precision scores are presented.
Mean values across all folds are also reported to highlight overall model performance
and consistency.

Table 1: Performance of the models in breast cancer tumor semantic segmenta-
tion.

Model Accuracy Recall DICE IoU Specificity Precision
2D Fold 1 0.987 0.612 0.611 0.444 0.994 0.615
2D Fold 2 0.987 0.587 0.603 0.433 0.994 0.623
2D Fold 3 0.987 0.633 0.615 0.447 0.993 0.606
2D Fold 4 0.986 0.672 0.597 0.428 0.991 0.539
2D Fold 5 0.987 0.668 0.621 0.453 0.992 0.588

2D 0.987 0.635 0.609 0.441 0.993 0.594
3D Fold 1 0.974 0.711 0.472 0.309 0.979 0.355
3D Fold 2 0.982 0.626 0.504 0.337 0.987 0.423
3D Fold 3 0.975 0.692 0.447 0.288 0.979 0.332
3D Fold 4 0.979 0.638 0.415 0.262 0.983 0.308
3D Fold 5 0.981 0.648 0.476 0.314 0.985 0.377

3D 0.978 0.663 0.463 0.302 0.983 0.359

To determine whether the observed performance differences are statistically mean-
ingful, we apply the Student’s t-test to each evaluation metric. The recall is the only
metric where no statistically significant difference was found between the 2D (0.635
± 0.045) and 3D (0.663 ± 0.046) models. All remaining metrics show statistically sig-
nificant differences, consistently favoring the 2D model over its 3D counterpart across
key segmentation indicators. The 2D model achieved an accuracy of 0.987 ± 0.001,
compared to 0.978 ± 0.004 for the 3D model (0.92% improvement). The Dice score
increased from 0.463 ± 0.042 (3D) to 0.609 ± 0.012 (2D), marking a 31.53% improve-
ment. Similarly, the IoU improved by 46.03%, rising from 0.302 ± 0.035 to 0.441 ±
0.013. The specificity of the 2D model reached 0.993 ± 0.002, outperforming the 3D
model’s 0.983 ± 0.005 (1.02% improvement). Finally, precision saw the most significant
gain, jumping from 0.359 ± 0.055 (3D) to 0.594 ± 0.042 (2D), a 65.46% improvement.

These results challenge the common assumption that 3D models are inherently
superior for volumetric segmentation, particularly in clinical contexts where data lim-
itations and acquisition constraints are present. Overall, the findings demonstrate a
consistent advantage of 2D segmentation over 3D in the context of breast cancer ADC
map analysis.While 3D models have shown success in similar segmentation tasks, sev-
eral factors may explain our findings [6]. Since expert annotations were performed on
individual 2D slices, there is no inherent inter-slice consistency in the ground truth,
which may negatively affect the learning of volumetric features. Furthermore, ADC
maps often depict lesions with irregular, heterogeneous, or complex shapes that vary
significantly across slices, making it challenging for 3D U-Nets to learn consistent vol-
umetric features [10].Moreover, 3D models require learning from sparser volumetric
data with increased dimensional complexity, which amplifies the risk of overfitting and
misalignment with the sparse annotations.
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5 Conclusions and Future Work

This study demonstrates that, for breast cancer segmentation using ADC maps, a
2D U-Net model significantly outperforms its 3D counterpart across key evaluation
metrics. The lower precision and Dice score of the 3D model suggest that it struggles
to reliably identify tumor regions, likely due to inconsistencies in volumetric data and
annotations. These results underscore the challenges of reconstructing 3D masks from
2D annotations and the complexities introduced by the varied shapes within ADC
maps. These findings challenge the prevailing assumption that 3D deep learning models
are universally superior for medical image segmentation and emphasize the importance
of adapting model architectures to the characteristics of the imaging modality.

Despite outperforming the 3D model, the 2D approach still yields lower segmenta-
tion performance than DCE-MRI-based models, likely due to the intrinsic limitations of
DW-MRI and ADC contrast. Future research could explore the integration of DW-MRI
and ADC maps as multi-channel inputs, or leverage transfer learning with pre-trained
encoders to boost the 2D model’s generalization capabilities. In parallel, future work
should address the limitations of 3D annotations, either by acquiring fully volumetric
expert labels or by developing post-processing strategies to improve inter-slice consis-
tency in the ground truth.
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