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Abstract. Breast cancer is one of the most common diseases affecting
women around the world, with millions of new cases each year and a high
rate of mortality. Although advances in detection and treatment have
led to better outcomes for many, some regions still struggle with limited
access to early diagnosis. Early detection of breast cancer significantly
improves treatment success, emphasizing the need for accessible, accurate
diagnostic tools.
This study focuses on improving the segmentation and classification of
breast tumors in mammographic images by examining the impact of
various preprocessing techniques on the performance of advanced ob-
ject detection models. We use the Digital Database for Screening Mam-
mography (DDSM), a benchmark dataset for mammography analysis, to
evaluate three state-of-the-art object detection models: Faster R-CNN,
YOLOv8, YOLOv9, and YOLOv11. These models are trained on images
processed with different methods to observe how each technique affects
the accuracy of tumor segmentation and classification into benign or
malignant categories.
The primary contribution of this study is the comparative analysis of pre-
processing effects on AI model performance in tumor detection, aiming to
identify an optimal preprocessing approach that maximizes accuracy and
reduces misclassification rates. We systematically assess preprocessing
effects on model accuracy, focusing on improvements in tumor visibility
and classification performance.
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1 Introduction

Breast cancer remains one of the most prevalent and life-threatening diseases
affecting women worldwide, with millions of new cases diagnosed each year and
a significant mortality rate. Despite continuous advancements in detection and
treatment, disparities in healthcare infrastructure mean that early diagnosis is
still a considerable challenge in many regions. Consequently, developing accurate
and accessible diagnostic tools is essential for enhancing breast cancer detection
rates and reducing mortality, particularly in resource-limited settings [1, 24].

Mammography is the most widely used imaging modality for breast can-
cer screening [3, 5], providing a non-invasive means of detecting abnormalities
at an early stage. However, the effectiveness of mammographic analysis is of-
ten hindered by challenges such as low contrast, noise, and variations in tissue
density, which can obscure tumor visibility. To address these issues, advanced
computer vision techniques, particularly deep learning-based object detection
models, have been increasingly employed for automated tumor segmentation and
classification. These models have demonstrated remarkable potential in assisting
radiologists by improving detection accuracy and reducing interpretation time.
Nonetheless, the performance of such models is highly dependent on the quality
of input images, making preprocessing techniques a critical factor in optimizing
detection outcomes.

This study investigates the impact of various preprocessing techniques on the
performance of state-of-the-art object detection models in breast tumor segmen-
tation and classification. Using the Digital Database for Screening Mammogra-
phy (DDSM) [8], a benchmark dataset for mammographic analysis, we evaluate
three leading object detection frameworks: Faster R-CNN [19], YOLOv8 [9], and
YOLOv9 [22]. Each model is trained on images subjected to different prepro-
cessing methods to assess how these techniques influence segmentation accuracy
and the classification of tumors as benign or malignant.

To better understand the role of preprocessing in mammographic image anal-
ysis, we define the following key research questions:

– RQ1: How does preprocessing affect the performance of YOLO and Faster
R-CNN in mammographic image analysis?

– RQ2: Which preprocessing techniques yield the highest tumor classification
accuracy?

By answering these research questions, this study aims to provide a system-
atic evaluation of preprocessing effects, helping to identify optimal strategies for
improving tumor detection performance.

The organization of this paper is as follows. Firstly, we present a review of
the relevant literature in Section 2. Then, Section 3 presents the materials and
methods that were used in this study. In Section 4, the experimentation results
are presented together with a discussion of the most relevant achievements of
those results. Finally, the conclusions of this paper are in Section 5.
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2 Related work

Automated breast tumor detection in mammographic images has been widely
studied, with preprocessing techniques playing a crucial role in improving deep-
learning model performance. By reducing noise, enhancing contrast, and stan-
dardizing images, preprocessing improves tumor identification accuracy. Researchers
have explored various methods to refine mammographic images before feeding
them into classification or segmentation models.

Noise reduction and contrast enhancement are key preprocessing techniques.
Ramani and Vanitha [18] analyzed different filtering methods, showing that while
some preserve tumor boundaries, others risk introducing artifacts that obscure
critical details. Avcı and Karakaya [2] demonstrated that machine learning-based
enhancement improves breast cancer detection rates but requires careful param-
eter tuning to avoid distortions. Additionally, Warren et al. [23] studied how pre-
processing influences lesion visibility, emphasizing the need for adaptable tech-
niques that enhance diagnostic features without compromising interpretability.

Beyond individual image enhancements, preprocessing also plays a funda-
mental role in dataset standardization for deep learning models. Beeravolu et
al. [4] explored artifact removal and contrast normalization, showing improve-
ments in dataset consistency and CNN generalization. Lu et al. [11] further
emphasized that tailoring preprocessing strategies to specific architectures, such
as YOLO-based models, significantly impacts classification performance.

While many studies focus on individual preprocessing techniques, this work
compares multiple methods to assess their impact on tumor detection in deep
learning models. As AI in medical imaging advances, preprocessing remains es-
sential for improving accuracy while maintaining interpretability for radiologists.
The challenge is to enhance image quality—through contrast adjustment, noise
reduction, and artifact removal—without introducing modifications that reduce
clinical trust and usability.

3 Material and methods

This section outlines the dataset, preprocessing techniques, and object detec-
tion models used in this study. We describe the Digital Database for Screening
Mammography (DDSM) dataset, detail the preprocessing strategies applied to
enhance tumor visibility and present the deep learning models employed for tu-
mor detection and classification. Finally, we explain the experimental setup and
evaluation metrics used for performance comparison.

3.1 The Digital Database for Screening Mammography DDSM
dataset

The Digital Database for Screening Mammography (DDSM) [8] is a public
dataset maintained by the University of South Florida. It contains images of
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mammograms performed on patients with and without tumors at different med-
ical centers. This dataset contains about 700 cases of patients without tumors,
about 900 cases with benign tumors, and about 900 cases of patients with can-
cerous tumors. For each case, the dataset includes two types of images of each
breast: a Mediolateral Oblique image (MLO) [16] and a Craniocaudal image
(CC) [15].

A drawback of this dataset is that the images are digitized using different
brands of scanners with varying resolutions in the scanning process. When se-
lecting the images to be used in this work, we selected the MLO images scanned
with a HOWTEK scanner with a resolution of 43.5 microns, and only those that
present any kind of tumor –benign or malign. In this way, it is standardized
that all the images involved in the comparison have the same characteristics.
The dataset used in the experimentation is composed of a total of 964 images, of
which 547 present cases with benign tumors and 419 cases with cancers. Figure
1 provides an example of the dataset’s mammographic images.

(a) Original image (b) Labeled cancerous regions

Fig. 1: Example of a mammographic image from the DDSM dataset (Case ID:
A_1171). The left image (a) shows the original mammogram, while the right
image (b) displays the same image with annotated cancerous regions.

3.2 Preprocessing methods

Unsupervised GrowCut preprocessing algorithm The GrowCut algo-
rithm, first introduced by Vezhnevets and Konouchine [21], is designed for multi-
label segmentation using a Cellular Automaton framework, where the image is
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represented as a grid of cells, and individual pixels act as these cells. Each pixel
p within an image P is defined by a triplet consisting of its label lp, a confidence
score θp, which indicates the certainty that the pixel belongs to class lp, and
a feature vector Cp. The process begins with a set of user-labeled pixels, each
assigned a confidence of 1. The algorithm then iteratively updates the labels
and confidence values of neighboring cells until no further changes occur, indi-
cating convergence to a stable segmentation. The rule governing cell evolution
is expressed in Equation 1, where q represents a neighboring pixel, defined using
either the von Neumann or Moore neighborhood system, while the function g is
formulated in Equation 2.

g(||−→Cp −
−→
Cq||2) · θtq > θtp (1)

g(x) = 1− x

max||−→C ||2
(2)

An unsupervised adaptation of GrowCut, proposed by Ghosh et al. [7], elim-
inates the need for user input by initializing with a randomly distributed set
of seed points that gradually expand to form segmented regions. This variant,
referred to as Unsupervised GrowCut (UGC), addresses two key limitations of
the original algorithm: the requirement for manual input and the restriction
on the number of segment classes. Initially, random seed points are assigned
a confidence value of 1, and their growth follows a modified transition rule,
which compares the output of the monotonic function g (from Equation 2) to
a predefined threshold. This threshold is also used for merging regions during
segmentation. Additionally, UGC establishes equivalence classes that group sim-
ilar labels, which are dynamically updated when regions merge. If the similarity
condition defined in Equation 3 is met, pixels p and q are considered part of the
same equivalence class, and their respective regions are fused.

The algorithm was tested on 30 MRI scans of the lungs and brain, using
a threshold value of 0.95 and an initial set of 100 randomly placed labels. The
segmentation results were visually assessed and compared to those obtained with
the MeanShift and NCut methods. Although no ground truth data was available,
qualitative analysis suggested that UGC performed comparably to the other two
techniques.

g(||−→Cp −
−→
Cq||2) · θtq > threshold (3)

Marginean et al. [13] further advanced the GrowCut method by introducing
a more autonomous variation known as Competitive Unsupervised GrowCut
(Competitive UGC). This approach retains the Cellular Automaton structure
while integrating the label-merging process from UGC [7] and the soft label
propagation mechanism from the classical GrowCut algorithm [21].

One key improvement addresses a limitation in UGC, where some segmented
regions may expand into adjacent areas without merging correctly. To resolve
this, Competitive UGC reinstates the original GrowCut evolution rule (Equation
1) while preserving the region-merging mechanism. However, merging occurs
only when a neighboring pixel q actively propagates its label.
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The method was tested on 20 MRI scans of the human heart and compared
against UGC and AdaPri UGC [14]. Results showed that segmentation perfor-
mance was largely dependent on the thresholding strategy, with each method
demonstrating optimal effectiveness under specific application conditions. Fig-
ure 2a shows the result after applying this preprocessing technique.

Erode and dilate The second preprocessing technique used in this work is
inspired by Omer et al. [12]. Its main goal is to remove unwanted elements, such
as scan marks and artifacts, from mammograms during tumor identification
and segmentation. This method relies on erosion and dilation, two fundamental
morphological operations in image processing.

Erosion is a transformation that shrinks foreground regions by removing pix-
els from object boundaries. Mathematically, given an input image I and a struc-
turing element S, erosion, denoted as I ⊖ S, consists of all points where S is
entirely contained within the foreground of I. This operation reduces object
size, eliminates small noise, and disconnects thin structures.

In contrast, dilation expands foreground regions by adding pixels to object
boundaries. Formally, the dilation of I by S, denoted as I ⊕ S, consists of all
points where the reflection of S intersects with the foreground of I. Dilation
enlarges object boundaries, bridges gaps between close structures, and restores
eroded features. When applied sequentially, erosion and dilation form morpholog-
ical operators such as opening and closing, which are widely used in segmentation
and noise reduction.

This preprocessing technique follows a three-step process:
1. Erode and dilate: In this first phase, the image is processed using erosion

and dilate operations. The image undergoes erosion and dilation to smooth
surfaces and distinguish breast tissue from unwanted artifacts.

2. Generate a Boolean mask: The next step is to build a mask that differ-
entiates the breast areas –the areas that are desired to keep in the image–,
from the unwanted areas of the image. A contour detection algorithm [20]
identifies segmented areas. The largest region is assumed to represent the
breast, while other areas are discarded.

3. Apply the mask to the original image: In the final step, the binary mask
is applied to the original image, isolating the breast region while preserving
fine details.

Figure 2b includes an example of the generated image after applying this
preprocessing method.

Combination of two processing methods The experimentation also in-
cluded an evaluation of the performance when combining the two preprocessing
techniques presented in the previous sections. In this scenario, the method based
on [12] was applied first, using the erode and dilate operations to generate a mask
that segments the original image. The resulting image was then used as a ref-
erence for applying the Unsupervised GrowCut technique from [7]. Figure 2c
illustrates the outcome of applying both preprocessing techniques together.
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(a) Unsupervised GrowCut (b) Erode and dilate based (c) Both methods

Fig. 2: Preprocessing results applied to the original mammogram from Case
A_1171 (Fig. 1a). The differences are visible compared to the original version
of the images. The GrowCut-based method (a) removes the pectoralis muscle,
the erode and dilate-based method (b) removes background artifacts such as
labeling, and the combined method (c) removes both.

3.3 Deep Learning methods

This study compares two model families: the Ultralitics’ YOLO family [9] and
the Faster R-CNN [19].

You Only Look Once YOLO [9] is a family of real-time object detection mod-
els that follow a single-stage approach, predicting object classes and bounding
boxes in a single pass through the network. This design prioritizes speed while
maintaining competitive accuracy. Over time, multiple YOLO versions have been
developed, each improving efficiency, accuracy, and feature extraction.

In particular, YOLOv8 [9] introduces a more efficient backbone and anchor-
free detection, improving speed and flexibility for multiple tasks like object de-
tection, segmentation, and pose estimation. On the other hand, YOLOv9 [22]
enhances detection precision using transformer-based modules and improved spa-
tial attention, optimizing computational performance. The most recent release
of YOLO is YOLOv11 [10], which refines efficiency further with better fea-
ture extraction and reduced computational cost, making it adaptable for various
deployment scenarios.

Faster Region-based Convolutional Neural Network Faster R-CNN [19]
is a state-of-the-art object detection algorithm based on Convolutional Neural
Networks (CNNs). It enhances previous detection methods by incorporating a
Region Proposal Network (RPN), which efficiently generates candidate object
regions. These proposals are then refined and classified by a detection network,
allowing for precise localization and recognition. As a two-stage detector, Faster
R-CNN offers high accuracy and robustness in object detection tasks but requires
substantial computational resources.
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3.4 Comparative analysis procedure

The comparative analysis conducted in this work involves the three Deep Learn-
ing models presented –YOLO, and Faster R-CNN—along with four different
versions of the DDSM dataset. The dataset versions used for experimentation
are as follows:

1. The original dataset, without any preprocessing applied.
2. A version where preprocessing is applied using only the GrowCut algorithm.
3. A version where preprocessing is applied using only the Erode and Dilate

algorithm.
4. A version combining both preprocessing algorithms.

During the experimentation, all three models were trained using each of the
four dataset versions, and their Average Precision (AP) [6, 17] was recorded for
comparison. To determine the best parameter configurations, an initial study was
conducted with various settings, leading to the selection of the values detailed in
Table 1. The training process was set to a maximum of 100 epochs, with early
stopping applied in cases where no further improvement in model performance
was observed.

Table 1: Hyperparameters used for training the models during experimentation.
Parameter YOLO Faster R-CNN
Optimizer AdamW (momentum: 0.9) SGD (momentum: 0.9)
Learning Rate 1.667× 10−3 2.5× 10−4

Batch Size 16 128

4 Results and discussion

This section analyzes the impact of different preprocessing techniques on the
performance of object detection models for breast tumor detection. By com-
paring YOLO-based models and Faster R-CNN, we examine how preprocessing
influences detection accuracy and whether it provides significant advantages in
medical imaging.

Table 2 presents the results obtained from the experimentation, as described
in Section 3. This table compares the Average Precision (AP) at confidence
thresholds of 50% and 75% for each model, evaluated using the four different
versions of the dataset processed with various preprocessing techniques.

Table 2 presents the results obtained from the experimentation, as described
in Section 3. This table compares the Average Precision (AP) at confidence
thresholds of 50% and 75% for each model, evaluated using the four different
versions of the dataset processed with various preprocessing techniques.

The most obvious finding from these results is the performance gap between
the YOLO-based models and Faster R-CNN. Across all experimental scenarios,
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Faster R-CNN consistently achieves superior accuracy, significantly outperform-
ing the YOLO models.

Table 2: Average Precision (AP) results for each model and preprocessing strat-
egy. AP is reported at confidence thresholds of 50% (AP50) and 75% (AP75).
The highest values in each section are highlighted in bold.
Preprocessing Method AP50 (%)

YOLOv8 YOLOv9 YOLOv11 Faster R-CNN
No Preprocessing (Original) 22.1 14.2 12.7 0.4
Erode and Dilate 12.8 12.0 12.6 91.1
GrowCut 18.7 14.7 12.4 77.9
Combined (Erode + GrowCut) 16.8 11.8 9.7 57.0
Preprocessing Method AP75 (%)

YOLOv8 YOLOv9 YOLOv11 Faster R-CNN
No Preprocessing (Original) 10.1 6.3 5.2 0.0
Erode and Dilate 6.5 5.7 6.1 27.4
GrowCut 9.6 5.7 6.0 33.0
Combined (Erode + GrowCut) 7.8 5.5 4.8 8.3

On the other hand, when analyzing the evolution of the metrics with the
different preprocessing algorithms, it can be observed that, in the case of YOLO,
there are no major differences in the AP, so it cannot be concluded that the
preprocessing represents an important modification for the models trained with
YOLO.

In analyzing the results with Fast R-CNN, there are significant differences
between the different preprocessing techniques. With this model, it can be seen
how the preprocessing algorithm based on Dilate and Erode operations achieves
a superior improvement compared to the algorithm based on Grow Cut. This
difference between the two methods may be because the grow-cut algorithm
removes a larger number of pixels from the image, which in some cases may lead
to the elimination of part of the area needed to detect and classify tumors.

Furthermore, if the AP of the preprocessing including only the Erode and
Dilate-based algorithm is compared with the preprocessing using the two tech-
niques, it can be observed that the Erode and Dilate-based algorithm can achieve
better results alone and is more effective without combining with the other tech-
nique. This also points out that the Grow Cut-based technique can be inefficient,
with some images of the model, causing crucial information to be lost for tumor
detection and classification.

Additionally, it is worth noting that the results indicate a strong correlation
between the preprocessing method and the complexity of the object detection
model used. While YOLO-based architectures exhibit resilience to different pre-
processing methods—showing relatively small variations in AP—the Faster R-
CNN model experiences a drastic improvement when high-quality preprocessing
is applied. This suggests that preprocessing has a greater impact on two-stage
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detectors like Faster R-CNN, where precise region proposals depend heavily on
the clarity and consistency of input images.

One explanation for this phenomenon is the difference in feature extraction
strategies between YOLO and Faster R-CNN. YOLO, as a single-stage detector,
directly predicts object locations and classifications, making it inherently robust
to minor distortions introduced by preprocessing. Conversely, Faster R-CNN
relies on a Region Proposal Network (RPN) that requires well-defined edges and
object boundaries to generate accurate bounding boxes. As seen in the results,
preprocessing that enhances contrast and removes noise significantly benefits
RPN-based models like Faster R-CNN.

Moreover, the results indicate that preprocessing not only affects detec-
tion accuracy but also has implications for computational efficiency. Faster R-
CNN, despite achieving the highest AP scores, is known for its higher computa-
tional cost compared to YOLO models. However, when preprocessing techniques
like Erode and Dilate are applied, the improvement in Faster R-CNN’s accu-
racy could justify its computational expense, particularly in clinical applications
where precise tumor detection is critical.

Focusing on the main objective of this article, which is the role of prepro-
cessing algorithms in the segmentation and detection of breast cancer, we can
extract the main argument that preprocessing in this medical image is of special
importance. The results of the best model evidence this –Fast R-CNN–, that
in the case of AP50, we can go from 0.4% with the original model to 91.1% in
the best of the scenarios proposed in this experimentation. Another important
discussion to keep in mind is that in addition to the importance of including a
preprocessing algorithm, choosing which algorithm is the best is also extremely
important. In our experimentation, the best-case scenario achieves an efficiency
of 91.1% by applying the best algorithm, but a poor choice of preprocessing
algorithm leaves the AP50 value at 77.9% or even 57% using the same data set
and the same model.

Finally, these results highlight a crucial consideration for the integration
of AI-based mammography analysis into clinical workflows. Given that prepro-
cessing significantly impacts detection accuracy, it is imperative to standardize
preprocessing pipelines when training AI models for medical applications. In-
consistent preprocessing across datasets could lead to significant performance
variations when models are deployed in real-world settings.

5 Conclusion

This paper addresses the problem of breast cancer detection, segmentation, and
classification to study the importance of model selection and preprocessing al-
gorithms in developing techniques to automate this task. There were two main
objectives: i) to determine the importance of the use of quality preprocessing
algorithms and ii) to determine which Deep Learning model architectures are
capable of achieving the best results. Different versions of the YOLO model and
the Fast R-CNN model have been evaluated to address the objectives. Each
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model has been trained in different scenarios corresponding to applying differ-
ent preprocessing algorithms to evaluate the differences between the different
techniques.

Experimental results have shown that Fast R-CNN represents an architecture
that obtains better results than YOLO. As for the preprocessing algorithms,
the experimental results show that using a good preprocessing technique can
improve up to 90% of AP. Furthermore, the importance of which technique is
used becomes apparent as the difference in AP between different techniques can
be up to 40%.

Future work in this line of development will be to explore and propose more
dataset preprocessing algorithms that follow the motivation of the Erode and
Dilate algorithm, as it is the one that has given us the best results in this
comparison. The motivation of this future study is to try to increase the AP
values obtained, which currently stand at 91.1%. Additionally, future research
should investigate the integration of data augmentation techniques alongside
preprocessing. Since deep learning models often struggle with limited training
data, augmentation strategies such as geometric transformations, contrast ad-
justments, and synthetic image generation could further enhance model robust-
ness and generalization in breast cancer detection.
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