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Abstract. During an impact, a load interacts with a structure during the time in-

terval td. Depending on the impact characteristics and the load rise time, tr, the 

amplification of the load can be found as a function of the parameters: td/T0 and 

tr/T0 where T0 is the eigenperiod of the structure. The paper will investigate dif-

ferent impact characteristics and summarize the amplification due to impact load-

ing in a one-degree-of-freedom system. The near static case, where the impact 

rise time is long, will give minimal amplification, while a rapid impact will result 

in an amplification factor closer to 2. Practical examples from snap-loading in a 

wire, explosions, and collisions will be discussed.   

Keywords: Impact Loading, Dynamic Amplification, Load Duration, Load 

Rise Time, Snap Loading, Explosion, Collision. 

1 Introduction 

1.1 Background to the study of the amplification of impact loading 

The study of the transfer of a load to structures is important as the load rise time and 

the loading duration are important parameters. A very rapid load transfer causes dy-

namic effects that represent dynamic amplification of the loading. In practical exam-

ples, such rapid loading is present during explosions and collisions. In the marine en-

vironment, impact loading occurs when a wave breaks against a structure.  

Note that impact loading is characterized by: 

• a single principal impulse 

• a relatively short time duration. 

During equipment lifting, a very rapid load transfer, a situation called snap loading, 

occurs when the load in the wire suddenly changes, for example, due to rapid loss of 

buoyancy when the structure gets out of the water. A criterion for good lifting practice 

is to avoid rapid lifting of equipment out of the water [1] and [2]. 

The response to the impact loading, is, however, to a large degree depending on the 

eigenperiod of the structure being impacted. An impact on a soft structure having a long 

eigenperiod gives rise to a lower response than an impact on a very stiff structure with 

a short eigenperiod. One can compare this to hitting a sandbag versus hitting a log. The 

sandbag will delay the effect of the impact. Thus, the amplification of the impact must 

be considered relative to the load duration time td, and the load rise time, tr versus the 

eigenperiod T0 of the structure being impacted; td/T0 and tr/T0, [3]. 
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It is of interest to investigate the response to loading caused by collisions, explosions, 

and wave impacts, in particular from breaking waves, [5], [6], [7]. The paper is orga-

nized as follows: In Chapter 2 several types of impact/ impulse loadings are discussed 

and in Chapter 3 specific loading scenarios and the associated dynamic response are 

discussed.  

2 The response to an impulse load 

2.1 The impulse-response method 

 

A simple way to investigate the response to an impact loading is to study a one-degree-

of-freedom system with eigenperiod T0 exposed to an impact with duration td and rise 

time tr. It should be noted that an impact load could be expressed in a Fourier series as 

any periodic loading function F(t) can be written as a Fourier series. 

 

The response to this loading is the sum of the contributions from the harmonic terms. 

In the case of a linear dynamic system, we have: 

 

m
𝑑2𝑥

𝑑𝑡2  + c
𝑑𝑥

𝑑𝑡
 + kx = F(t)                (1) 

 

The standard method to find the response due to a non-periodic loading on a single-

degree-of-freedom linear system is, however, to use the impulse-response method. The 

response is found by dividing the loading into rectangular impulses, Figure 1. We cal-

culate the response from each rectangular impulse and the total response at time ti is the 

sum of the responses to the loading at time ti. 

 

 
Figure 1. The Impulse loading can be regarded as a sum of rectangular impulses. 

 

An impulse Ii is generated by a force Fi(t) that has a large value over a short period 

Δt = t2 – t1: 

  

𝐼𝑖 = 𝐹𝑖∆𝑡 = 𝑚
𝑑𝑥2

𝑑𝑡
− 𝑚

𝑑𝑥1

𝑑𝑡
                                               (2) 

Here, 

Ii = Impulse = Fi(t) • Δt 
𝑑𝑥2

𝑑𝑡
 = Velocity after the impulse, at time t2   

𝑑𝑥1

𝑑𝑡
 = Velocity before the impulse, at time t1 



3 

𝑚
𝑑𝑥

𝑑𝑡
 = Mass-movement  

 

We then define a unit impulse: 

 

 Ĩ𝑖 =  𝑙𝑖𝑚
𝛥𝑡→0

  ∫ 𝐹𝑖
𝑡+ 𝛥𝑡

𝑡
(𝑡)𝑑𝑡             (3) 

 

As Δt → 0, a unit value of 1 for the integral is obtained when Fi(t) → ∞.    

  

We then define the δ-function 𝐹𝛿(𝑡) = δ(t-τ) that is zero except for at t = τ. 

 

If we give the system given by equation (2) a unit impulse when the displacement x 

at t = 0 is 0, and the velocity at time t = 0- = 0 (zero motion before the impulse), the 

velocity at t = 0+ is 
𝑑𝑥

𝑑𝑡
 (t = 0+) = ẋ0 and the displacement at t = 0+ (following the impact) 

is given by:  

 

𝑥(𝑡) =  𝑒−𝜆𝜔0𝑡 1

𝑚𝜔𝑑
sin (𝜔𝑑𝑡)             (4) 

Here,  

𝜔0 is the eigenfrequency of the motion = √
𝑘

𝑚
 

𝜔𝑑 is the damped frequency = 𝜔0√1 −  𝜆2 

λ is the relative damping; λ = 
𝑐

2𝑚𝜔0
 

The response is a damped oscillatory motion with frequency 𝜔𝑑. In the case of an 

arbitrary impulse load I, the displacement must be multiplied by the value I. 

As any arbitrary loading function can be divided into rectangular impulses acting at 

the time t = τ, the response at the time t from a rectangular impulse I (τ) acting at time 

t = τ, is 

       𝛥𝑥(𝑡) =  𝐼(𝜏)𝑒−𝜆𝜔0(𝑡−𝜏 1

𝑚𝜔𝑑
sin (𝜔𝑑(𝑡 − 𝜏)) =  𝐼(𝜏)ℎ(𝑡 − 𝜏)                  (5) 

 

The total response at time t is the sum of the response from the individual impulses 

 

x(t) =  
1

𝑚𝜔𝑑
∫ 𝐹(𝜏)

𝑡

0
𝑒−𝜆𝜔0(𝑡−𝜏)sin (𝜔𝑑(𝑡 − 𝜏))dτ                    (6) 

 

This is the “convolution integral” or Duhamel integral. 

 

In the case of no damping, the exponential part is equal to 1 as 𝜆 = 0, and 𝜔𝑑 = 𝜔0 

 

The total displacement in the case of no damping must include the initial conditions, 

and by adding the solution of the homogeneous equation (2) when F(t) = 0, we obtain 

the total solution as 
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x(t) = 𝑥0cos(𝜔0𝑡)  +  
1

𝜔0
 
𝑑𝑥0

𝑑𝑡
 sin 𝜔0 𝑡  +  

1

𝑚𝜔0
∫ 𝐹(𝜏)

𝑡

0
sin (𝜔0(𝑡 − 𝜏))dτ        (7) 

 

Here, 

      𝑥0 is the value of the displacement at t = 0 

  
𝑑𝑥0

𝑑𝑡
 is the value of the velocity at t = 0 

2.2 Immediate release of a mass-spring system. 

The immediate release of a mass-spring system is equivalent to a situation when a sud-

den load appears in the wire (the problem of slack wire).  

 

In this case, the initial conditions are as follows: 

 

F1(t) = 0 for t ˂0 and F1 = mg, for t ≥0 

 

 Neglecting damping, λ =0 and 𝜔𝑑 = 𝜔0 

 

Then,  

x(t) = 
𝐹1

𝑚𝜔0
 ∫ 𝑠𝑖𝑛𝜔0

𝑡

0
(t-τ)dτ = 

𝐹0

𝑘
 {1- cos(𝜔0𝑡)}         (8) 

 

  The dynamic amplification is 

 

DLF = 1- cos(𝜔0𝑡)                                     (9) 

    

Neglecting damping, we see that the maximum displacement is twice the static dis-

placement x(t) = 
𝐹1

𝑘
 at cos ω0t = -1, i.e. at ω0t = π, i.e., at the time t = T0/2. The maximum 

elongation of the spring (the dynamic amplification) is thus twice the elongation com-

pared to the case of static loading; as if the impact load was twice the static load. The 

situation resembles a snap load. Introducing damping, the displacement would be less. 

 

2.3 Rectangular pulse load with finite duration, td 

 

In the case of a constant rectangular pulse with value F1 and finite duration, td, the 

displacement for t ≤ td is given by (9), while the value of the load F1 is equal to 0 at t 

≥ 𝑡𝑑 .   
In this case, only the homogeneous part remains for t ≥ td: 

 

x(t) = 
𝐹1

𝑘
 {cos 𝜔0 (𝑡 − 𝑡𝑑 ) – cos (𝜔0t)}            (10) 

If td ˃ 
𝑇0

2
  , the maximum dynamic amplification is 2. For short values of td, the value 

of the term cos(𝜔0𝑡) during the interval from t = 0 to t = td is small, and the dynamic 

amplification, DLF, is less, see Figure 2, [3]. 
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Figure 2. Typical responses of one-degree-of-freedom systems exposed to a rectan-

gular load F1 with duration td, from [3]. 

 

For an immediate loading, omitting damping to identify the maximum dynamic effect 

is acceptable, as the damping effect would not be activated quickly compared to the 

load application. 

 

2.4 Constant impact load with a finite rise time, tr 

 

All impact loading will be transferred over a finite time, although the rise time might 

be very short in certain cases. It is of interest to find the effect of the rise time, tr:  

 

The impact loading is given as: 

 

F(t) = (F1·
𝑡

𝑡𝑟
), for t ≤ 𝑡𝑟                (11a) 

F(t) = F1, for t ≥ 𝑡𝑟                 (11b) 

 

In this case, the dynamic amplification, DLF is given as: 

 

DLF = 
1

𝑡𝑟
 (t - 

sin 𝜔0𝑡

𝜔0
), for t ≤ 𝑡𝑟              (12a)  

DLF = 1 + 
1

𝜔0𝑡𝑟
{𝑠𝑖𝑛𝜔0(𝑡 − 𝑡𝑟) - sin𝜔0𝑡}, for t ≥ 𝑡𝑟        (12b) 

       When the rise time tr is short compared to T0, 
𝑡𝑟

𝑇0
 is low, and the value of (𝜔0 𝑡)  

gets large during the rise time. The displacement will reach the value 
2𝐹1

𝑘
 . When the 

rise time is large compared to the eigenperiod T0, the value of 𝜔0t is small during the 

rise time, and the response will continue to increase almost statically, as the load could 
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be seen as just pushing onto the structure. Figure 3 (from [3]) shows examples of the 

dynamic amplification, DLF, for short and large values of 
𝑡𝑟

𝑇0
 ., while Figure 4 shows the 

maximum DLF for different values of 
𝑡𝑟

𝑇0
 . It can be seen from this figure that if the rise 

time is less than ¼ of the eigenperiod, T, the max value of the DLF is close to the same 

effect as a sudden applied load. 

     It is possible to follow the displacement after the rise time of the impact, i.e., when 

the load has reached the constant value, F1. In this case, we must use Equation (8) with 

the initial values of the displacement and velocity at the time tr: 

 
 

Figure 3. Typical responses of one-degree-of-freedom systems exposed to a constant load 

with finite rise time tr, from [3]. 

 
Figure 4. Maximum dynamic response of one-degree-of-freedom systems exposed to a con-

stant load with finite rise time tr. T is the eigenfrequency of the system, from [3]. 

 

2.5 Triangular symmetric impact load with duration td.  

 

In many realistic situations, the load will be transferred over a certain rise time, tr, 

and have a limited duration, td. It is, therefore appropriate to study the effect of such a 

realistic load transfer situation. To simplify, let us consider a symmetric triangular pulse 

reaching its maximum F1 at half of the total duration, so: tr= ½ td: 
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F(t) = 2F1 
𝑡

𝑡𝑑
, for 0 ≤ t ≤ ½ td              (13a) 

F(t) = 2F1(1- 
𝑡

𝑡𝑟
), for ½ td ≤ t ≤  td             (13b) 

F(t) = 0, for td ≤ t                   (13c) 

 

In this case, the dynamic amplification, DLF is given as: 

 

DLF = 
2

𝑡𝑑
 (t - 

sin 𝜔0𝑡

𝜔0
), for 0 ≤ t ≤ ½ td           (14a)  

 

DLF = 
2

𝑡𝑑
 {td - t + 

1

𝜔0
{2𝑠𝑖𝑛𝜔0(𝑡 −  

𝑡𝑑

2
) - sin𝜔0𝑡}}, for ½ td ≤ t ≤ td (14b) 

 

DLF = 
2

𝜔0𝑡𝑑
 {2𝑠𝑖𝑛𝜔0(𝑡 − 

𝑡𝑑

2
) - sin𝜔0𝑡 - sin𝜔0(𝑡 −  𝑡𝑑 ) for td ≤ t (14c) 

 

These equations give interesting results as shown in Figure 5 (from [3]). The maxi-

mum dynamic response is less than 2 and obtains its maximum of close to 1.5 when the 

duration is close to the eigenperiod of the structure.   

 
Figure 5 Maximum dynamic response of one-degree-of-freedom systems exposed to a sym-

metric triangular load with duration td and finite rise time ½ td. T is the eigenfrequency of the 

system, from [3]. 
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2.5 Triangular sudden impact load with duration td.  

 

An explosion is represented by a very rapid build-up of the load, followed by a de-

cline of the loading. The load could be represented by a sudden triangular pulse with 

duration td.    

 

The loading is represented by the equations: 

 

F(t) = F1(1 – 
𝑡

𝑡𝑑
), for t ≤ td                 (15a) 

F(t) = 0, for t ≥ td                   (15b) 

 

In this case, the dynamic amplification, DLF is given as: 

 

DFL = 1- cos 𝜔0𝑡 + 
𝑠𝑖𝑛𝜔0𝑡

𝜔0𝑡𝑑
 - 

𝑡

𝑡𝑑
 , for t ≤ td           (16a) 

DLF = 
1

𝜔0𝑡𝑑
 {𝑠𝑖𝑛𝜔0𝑡 - 𝑠𝑖𝑛𝜔0(𝑡 − 𝑡𝑑)} - cos 𝜔0𝑡, for t ≥ td     (16b) 

 

For long durations of the load compared with the eigenperiod of the structure, the 

dynamic amplification tends toward the value of 2 in the case of a triangular load. The 

dynamic amplification is, thus, large in the case of a very stiff structure with a short 

eigenperiod.  

The response to a rectangular load pulse is, on the other hand, more rapid. 

For a short duration of the load compared to the eigenperiod of the structure, the dy-

namic amplification is far less pronounced. The consequence is that an explosion will 

be amplified strongly in the case the load hits a very stiff structure while the dynamic 

amplification is limited for a softer structure. This finding should be used for the design 

of structures exposed to potential triangular explosion type of loading.  

 
 

Figure 5 Maximum dynamic response of one-degree-of-freedom systems exposed to a trian-

gular load with duration td. The results are compared with the solution of a one-degree-of-free-

dom system exposed to a rectangular load with duration td.  T is the eigenfrequency of the system, 

from [3]. 
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3. Applications and discussions  
 

 3.1 General considerations 

 

 A series of impact load functions are discussed in Chapter 2. Figures are taken from 

reference [3]. The chapter focuses on the dynamic amplification of the load while 

[3] also presents results for the time of the maximum response. However, for the 

design of structures to withstand the loading, the maximum dynamic effect is the 

most important.  

   For structural design, the load is multiplied by a load factor 𝛾𝐿and the material 

capacity is reduced by a material factor 𝛾𝑀. For loadings caused by the physical 

environment the value of the product of  𝛾𝐿 and 𝛾𝑀 is typically 1.5 [8]. In the case 

of a dynamic amplification factor of 2, as demonstrated in Chapter 2 for many im-

pact loading scenarios, the inclusion of the DLF is most important, so the safety 

against damage is DLF·𝛾𝐿·𝛾𝑀. The value of DLF is critical for structural safety.  

   In Chapter 2 it was demonstrated that the DLF is dependent on the relative rise 

time and the relative duration of the load, i.e. by 
𝑡𝑟

𝑇0
 and  

𝑡𝑑

𝑇0
, where T0 is the eigenper-

iod of the structure. A soft structure, i.e. a structure having a high eigenperiod com-

pared to the rise time or the duration of the load, responds slower to the impact 

loading, and the dynamic effect is lower. Specific examples are considered below.  

 

 3.2 Collisions  

 

During a collision, the impact loading could be modeled as a constant impact load 

with a finite rise time, tr, Figure 4. The dynamic effect depends to a large degree on 

the stiffness of the structure, and a soft collision (with a structure having a high 

eigenperiod) has fewer consequences than a hard collision. Similarly, the rise time; 

the speed of the impact (the velocity during the impact) is important. 

• Modern cars are designed to buckle (high eigenperiod) during a collision 

rather than to limit the damage to the body of the car.  

• The bow of an icebreaker is very stiff (low eigenperiod). The damage dur-

ing a collision with an icebreaker is more severe than a collision with a 

softer vessel.  

• Similarly, the stern rollers of a supply ship are stiffer than the bow of tradi-

tional supply ships, and the damage caused by the rollers could be large in 

case the supply ship backs into a structure.  

 

3.3 Explosions 

 

During an explosion, the loading increases very rapidly and the load thereafter re-

duces quickly. The situation of triangular impact might describe the response. Softer 

structures (long value of the eigenperiod) give rise to lower dynamic amplifications 

than stiff structures.  
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• This effect could be taken into account for the design of equipment holding 

very explosive liquids, like hydrogen [4] or gasoline.  

 

3.4 Breaking waves. 

 

For the design of offshore structures or sea-going vessels, steep waves pose specific 

concerns to the designers. Breaking waves could be in the form of spilling breakers 

with a finite rise time or plunging breakers giving a sudden impact, i.e. the crest front 

steepness is an important parameter. The responses to breaking waves have been of 

concern to much research, see for example [5] to [7]. It is proposed in [7] that the impact 

loading caused by breaking waves is a linear function of the steepness (See Figure 6) 

of the waves. Considering Figure 4 related to constant impact load with a finite rise 

time, tr, we see that the dynamic amplification is reduced almost linearly over a wide 

range of values of 
𝑡𝑟

𝑇0
, i.e. when the wave steepness is reduced.  

 
Figure 6 Wave steepness = 

𝜂

𝐿′ , from [7] 

3.5 Snap loading in a wire 

 

The case of snap loading must be avoided as the response to such loading is a dy-

namic amplification of 2, see Chapter 2.2. 
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