
DEVELOPMENT OF DYNAMICAL MODELS
FOR GUIDANCE AND CONTROL OF OCEAN

VEHICLES

Nikolaos I. Xiros1, Miguel Trejos1, and Erdem Aktosun2

1 Bollinger School of Naval Architecture & Marine Engineering, University of New
Orleans, New Orleans, LA, 70148, USA
nxiros@uno.edu, matrejos@uno.edu

2 Department of Shipbuilding and Ocean Engineering, İzmir Kâtip Çelebi University,
Havaalanı Şosesi Cd, 35620, Izmir, Türkiye

erdem.aktosun@ikcu.edu.tr

Abstract. An autonomous boat with electric propulsion using direct-
current motors as prime movers and screw propellers is investigated.
Dynamical modeling capable to adequately describe the seakeeping of
the craft in various conditions is employed to fuse fundamental princi-
ples and data sets obtained from an experimental campaign. A standard
nonlinear state-space model is formulated using neural networks that are
trained using supervised training machine learning methods. The dy-
namical model forms the basis for applying physicomimetic approaches
to control and navigation of standalone boats or swarm thereof.

Keywords: Ocean Vehicle Dynamics · System Identification · Neural
Networks.

1 Introduction

With the growing success of data-driven approaches in various fields particularly
machine learning (ML) and its subset deep learning, people are increasingly in-
vestigating their applicability to complex engineering problems. Among these,
one important application is the modeling and control of dynamic systems, which
are often nonlinear, high-dimensional and difficult to represent analytically. Ma-
chine learning models and especially neural networks offer a compelling alter-
native due to their ability to learn complex input-output relationships directly
from data without requiring explicit equations [3, 7].

In particular, deep neural networks have shown promise in system identifi-
cation tasks where the goal is to estimate the mathematical model of a system
based on observed data. This is especially relevant for dynamic systems where
accurate modeling of time-dependent behavior is essential. Time-domain mod-
eling approaches that aim to capture the relationship between a system’s state,
its input and the time derivatives of its state, are vital for understanding and



2 N. Xiros et al.

predicting system dynamics [12]. Neural network serve as universal function ap-
proximators [4, 3], making them suitable tools for this purpose, as they can ap-
proximate the significant functional relationships governing a system’s evolution
over time.

This research focuses on applying such methods to model the dynamic of
a marine vehicle specifically a surface watercraft. Marine vehicles pose unique
challenges for modeling due to their interaction with a complex and often un-
predictable marine environment. A typical surface watercraft has six degrees
of freedom (6-DOF) surge, sway, heave (translations), and roll, pitch, yaw (ro-
tations), which together define its motion and orientation in three-dimensional
space [1]. Accurate modeling of these DOFs is critical for control, navigation,
and simulation purposes, yet obtaining high-accuracy models using traditional
physics-based approaches can be time-consuming and limited by simplifying as-
sumptions.

Recent studies have also explored how including boat dynamics into the con-
trol of autonomous surface swarms impacts performance. In scenarios comparing
dynamic versus nondynamic conditions, boat dynamics significantly affect tra-
jectory smoothness, velocity profiles, yaw rates, and convergence behavior. Boats
operating with full dynamics tend to converge more smoothly and avoid colli-
sions more effectively despite slightly slower response times due to increased
complexity. These results emphasize the importance of including physical dy-
namics for more realistic, robust, and energy-efficient swarm control in marine
environments [11].

In our work, we concentrate on two primary dynamic components: surge
(forward acceleration) and yaw (rotational acceleration about the vertical axis),
as they are especially relevant for maneuvering and path-following control. To
collect the necessary training data, a physical prototype of the surface water-
craft was constructed and equipped with onboard sensors capable of measuring
motion and input commands. A series of controlled experiments were conducted
in a test environment, and the resulting data were used to train feedforward
neural networks to model the input-output dynamics of the craft. Once trained,
the models were included into a simulation framework designed to predict the
trajectory of the watercraft based only on motor inputs. This enables testing and
validation of control strategies in a virtual environment before deployment. The
details of model training, validation, and the resulting performance in simulation
are well analyzed and presented with given results.

2 Boat Construction and Trials

2.1 Vehicle Design

The vessel used was a repurposed New Bright’s Sea Ray Sundancer 29” remote
control (RC) speed boat which came with oppositely rotating twin screw pro-
pellers of unknown origin. Though they most closely match the Blomiky’s H102
RC Boat Propellers. For propulsion, we used two of Injora’s 550 watt, 29 turn,



Title Suppressed Due to Excessive Length 3

brushed, waterproof RC motors which were connected to the shaft via universal
couplings. After inspection, it was found that the motors did not operate at the
same rpm, which propagated to the model.

To control the motors, two of GoupRC’s 2 - 3S, Lithium Polymer (LiPo), Wa-
terproof, Brushed Electronic Speed Controllers (ESC) were implemented which
received inputs wirelessly from anr Elegoo UNO R3 board onshore. In order to
accomplish this, we used Radiolink’s R8EF RX receiver and T8S, 8 Channel, 2.4
GHz transmitter. The sensors implemented on the vessel were a 9-axis inertial
measurement unit (IMU) and a compass magnetometer. To collect and send the
data we installed a Elegoo’s UNO R3 ATmega328P, Arduino-compatible board.
Power for the entire vessel came from a Exceed RC’s 8.4-volt, 3000 milliamp
hour, NiMh battery. Figure 1 shows the electronics diagram of the vessel. For a
more in depth description of the vessel design view [2].

Fig. 1. Diagram of surface watercraft electronics



4 N. Xiros et al.

2.2 Dynamic Tests and Data Collection

A set of experimental tests were performed for calibration and to gather system
data for the purposes of training neural networks to approximate the state equa-
tions of the system. The data batch was collected on Monday March 15th, 2024,
at 29.9997° N and 90.0857° W. Three different dynamic runs were performed
to collect data. First, a run where the vessel made counterclockwise circles of
about 3-4 meters in diameter for 5-8 complete laps. Second, a run where the ves-
sel made clockwise circles following the same instructions as the previous run.
Third, a run where the vessel drove back and forth in a straight line of 10 meters
at full thrust 5-8 times.

As stated previously, both an IMU and a compass where used to collect data.
The IMU module implemented in the design was a Adafruit 9-DOF Absolute
Orientation IMU Fusion Breakout – BNO055 that consists of a Magnetome-
ter, Accelerometer, Gyroscope, and MCU (Mirco-Controller Unit). This module
measures linear accelerations and angular velocities using 3-axis capacitors, and
measures magnetic strength vector using a magneto-resistive magnetometer. To
interface with the IMU using the micro-controller, an open source Adafruit li-
brary, Adafruit BNO055, was used. The compass module implemented was a
GY-271 QMC5883L compass magnetometer from WWZMDiB. This module was
used as an extra sensor to check the data from the IMU. The sensor modules
are not perfect in their operation so small waves, mostly caused by the vessel
turning back on its’ own wake, wind, and short malfunctions translate a fair
amount of noise. The computer filters this noise as far as it can without losing
credibility, but it still surfaces.

To transmit the data from the boat to the shore, two Deegoo-FPV’s nRF24L01
2.4 GHz, wireless RF Transceiver modules are implemented. The modules are
initialized for maximum range and for a data rate of 2 Mbps. Every loop, eight
values are sent in a single string. Those values being: forward acceleration, yaw
velocity, pitch, roll, yaw, compass readings, and inputs to both motors. Unfor-
tunately, the transceivers communicate in irregular time steps and these small
variations were not noticed until after network training and simulation modeling.

3 System Identification

3.1 Data Pre-processing

To ensure adequate performance, the raw data was pre-processed before being
used. Firstly, the accelerometer vector was normalized to the acceleration due
to gravity. Using trigonometry, the values from the accelerometer were used to
calculate the pitch (θ) and roll (ϕ) of the model. The roll and pitch from the
accelerometer alone went through a 90% low-pass filter to stabilize the data.
These calculated values and the values from the gyroscope were sent through
98% filters preferring the readings from the gyroscope and previous accelerometer
reading to the new calculated one. This allowed quick measurements that were
corrected by the accelerometer in the long run.



Title Suppressed Due to Excessive Length 5

θ◦a = tan−1(
ẍa
z̈a

) ∗ 180◦

π
(1)

ϕ◦a = tan−1(
ÿa
z̈a

) ∗ 180◦

π
(2)

θ◦ = 0.98(θ − ẏgdt) + 0.02(θa) (3)

ϕ◦ = 0.98(ϕ− ẋgdt) + 0.02(ϕa) (4)

Where variables with script ‘a’ come from the accelerometer vector, script
‘g’ come from the gyroscope vector, ‘m’ from the magnetometer, and ‘dt’ is the
change in time. Calculating the cardinal direction the vessel is facing regardless
of pitch and roll, using Euler angle transformations, takes a different form:

x = xm cos(θ) + ym sin(ϕ) sin(θ)− zm cos(ϕ) cos(θ) (5)

y = ym cos(ϕ)− zm sin(ϕ) (6)

ψ◦ = tan−1(
y

x
) ∗ 180◦

π
(7)

This completely rids the yaw angle (ψ◦) of any vertical noise and ensures an
accurate reading no matter the vessel orientation. With the intention of using
the extra compass magnetometer sensor to check the data from the IMU, we use
a filter that feeds back 90% of the IMU yaw with 10% of the compass azimuth.
This value is then sent through a 70% low-pass filter preferring the older value
for stabilization. Finally, the data is rescaled to a new range [0,1] before being
input to the neural networks.

3.2 Nonlinear State-Space Model

To approximate the non-linear state equations for forward acceleration and yaw
acceleration we employed the use of neural networks which are a supervised
learning model. Neural networks were originally created as an imitation of the
neuroscience model of human brain neurons, and are a form of biologically in-
spired model. The model architecture consists of layers of "neurons" that are
fully connected to the layer in front. These layers are split into three distinct
categories: input layer, hidden layer(s), and output layer. Each neuron takes in
all the outputs of the previous layer and performs a linear transformation of the
form:

y =Wx+ b (8)

Where ‘y’ is the output, ‘x’ is the input to the neuron, ‘W’ is the weight
associated with the connection between the output neuron from the previous



6 N. Xiros et al.

layer and the input neuron, and ‘b’ is the bias term. The outputs can be seen as
derived features. To be able to approximate non-linear functions, a non-linear
activation function is applied to these derived features. Typical activation func-
tions that are used include sigmoid, hyperbolic tangent, and rectified linear unit
(ReLU).The modern recommendation and the most widely used activation func-
tion is ReLU [3], [8]. Among the top reasons are ReLU typically performs better
than other activation functions, solves the vanishing gradient problem that other
activation functions face, and is computationally inexpensive [5], [8], [10].

As with other parametric, supervised learning models, neural networks ap-
proximate a function by optimizing their parameters to reduce an error/cost
function. For regression, the typical error function used and the one used in this
paper is mean squared error (MSE):

MSE =
1

n

∑
(y − ŷ)2 (9)

Where ‘y’ is the given target value, ‘ŷ’ is the predicted value from the model,
and ‘n’ is the number of outputs. To optimize the parameters, a gradient descent
algorithm is typically used where the gradient of the loss function is calculated
with respect to each weight and bias. The weights and biases are then updated
as followed:

W(r+1) =Wr − α∆WMSE (10)

where Wr is the current weight value, W(r+1) is the updated weight value,
∆WMSE is the gradient of the loss function with respect to the weight, and α
is a user defined hyperparameter called the learning rate. This method requires
manual tuning of the learning rate, however, there are optimization algorithms
that can adapt their learning rates during training. For our network, we decided
on Adam which was introduced in [6]. Although there is no clear best algorithm,
adaptive methods generally perform better and are computationally efficient [9].

Neural networks, just like all other machine learning techniques, need to be
able to perform well on data that it hasn’t seen or been trained on. The two
main ways that the model can fail is by underfitting or overfitting. Underfitting
happens when the model is unable to approximate the function resulting in
high training error and test error. Overfitting occurs when the model follows
too close to the training data and is not able to generalize; resulting in very low
training error and higher test error [3]. Typically, neural networks face overfitting
problems, so regularization/ weight decay is used to correct it. This method for
regularization, also referred to as L2 regularization, adds a penalty term to the
error function which forces the weights to smaller values:

L =MSE − λ
∑

W (11)

where L is the total cost function and λ is a tunable parameter.
For both of our neural networks, we used one input layer, one hidden layer,

and one output layer. The model was designed with 4 input neurons, 9 hidden
neurons, and 1 output neuron as shown in Figure 2. We chose ReLU for the



Title Suppressed Due to Excessive Length 7

Fig. 2. Neural network architecture

hidden neuron activation functions and a linear function for the output. The
4 inputs to the network were forward velocity, yaw rate, left motor, and right
motor. The output for one network is forward acceleration and the other is yaw
acceleration. Both networks are built and trained in MATLAB.

Once trained,the neural networks were implemented into the simulation shown
in Fig. 3. The system used to create the simulation was Mathworks’ Simulink.
Since the networks approximate the state equations, they were fed the inputs
which are the motor values, and their current state variables which were the
forward velocity and yaw rate. Initial conditions for both yaw rate and forward
velocity were assumed to be zero. All inputs to the networks are normalized the
same way as in training. The networks output forward acceleration and yaw ac-
celeration. These values are then integrated to obtain forward velocity and yaw
rate. Yaw rate is integrated once more and then sent to a Matlab function block
along with the forward velocity. This block calculates the x and y components of
the velocity and the heading in radians. Both velocity components are integrated
to obtain the ship coordinates and sent to output along with the heading. The
simulation is run and the ship path is plotted from the output.

4 Results

The neural networks were trained for 10000 epochs, with an initial learning
rate 0.001, weight decay of 0.0001, and the weights were initialized using the
default Glorot/Xavier initialization. Network training was done on a GeForce
RTX 4080 Ti. After being fully trained, both networks were sent the full test



8 N. Xiros et al.

Fig. 3. Block diagram flow of simulation model

data to compare their outputs to the ground truth seen in Figure 4(a) and
Figure 4(b).

Fig. 4. (a) Forward acceleration comparison on test data, (b) Yaw acceleration com-
parison on test data

Figure 4(a) presents the predicted surge (forward) acceleration generated by
the neural network model in comparison with the ground truth obtained from
experimental measurements. The model effectively captures the fundamental
dynamics over time that is showing strong time-related coherence despite the
sensor noise. This alignment indicates successful learning and generalization of
the nonlinear surge response from the input-output data. Similarly, Figure 4(b)
shows the predicted yaw acceleration compare with the corresponding measured
values. The close agreement across a range of input profiles confirms the neu-
ral network’s capability to approximate complex, nonlinear yaw dynamics with
high resolution that is validating its potential for real-time guidance and control
applications. Note that the neural network signals are much smoother than the
experimental measurement time series. This means that the neural networks act
also as frequency-selective filter. Also, note that the yaw acceleration signal is



Title Suppressed Due to Excessive Length 9

more noisy that the forward acceleration one; this observation has been made in
other similar studies, too.

Now, one may see a series of trial runs, including linear forward trajectories,
clockwise circular maneuvers, and counter-clockwise circular maneuvers with ad-
ditional dynamic tests to assess model generalizability under varied operational
conditions.

4.1 Forward run

Fig. 5. Forward run at 22.5 and 255

Figure 5 shows the trajectory of the vessel during a forward thrust test.
Motor inputs were at 22.5 and 255, producing a slightly curved trajectory. The
plot shows the vessel paths for validation. The plot looks like a map and the
trajectory like one that would appear on an ECDIS (Electronic Chart Display
System) or radar.

4.2 Port circle

Figure 6(a) shows the simulation and test results for a counterclockwise circle
maneuver where the right (starboard) motor was at full thrust (255) and the



10 N. Xiros et al.

Fig. 6. (a) Port circle run at 0 and 255, (b) Port circle run at -255 and 0

left (port) motor was inactive (0). The vessel’s circular path confirms differen-
tial thrust-induced yaw. Another counterclockwise circle test is shown in Figure
6(b), with full reverse thrust on the port motor (-255) and zero thrust on the
starboard one. This plot highlights the nonlinear behavior of the vessel under
reverse input and validates the model’s response accuracy. Note a standard test
like that is typically performed during sea trials of full-scale vessels. The impor-
tant parameters to note are the time to complete the maneuver and the radius
of the circle.

4.3 Starboard circle

Fig. 7. (a) Starboard circle run at 255 and 0, (b) Starboard circle run at 0 and -255

Figure 7(a) shows a clockwise turning maneuver with full thrust applied
to the left (port) motor and none to the right (starboard) one. The predicted
trajectory aligns well with the experimental path, showing the model’s capability



Title Suppressed Due to Excessive Length 11

to simulate yaw-induced motion. In this test, clockwise turning was induced by
full reverse thrust on the starboard motor, with no input on the port motor
as shown in Figure 7(b). The comparison of simulated and actual trajectories
supports the model’s robustness under reverse input scenarios.

4.4 Additional Tests

Fig. 8. (a) Both motors full (255/255), (b) Both motors neutral (0/0)

In Figure 8(a), the vessel was operated with both motors at full forward
thrust. The resulting trajectory is implemented according to expectations, and
the model’s predictions closely match the test data. This result strengthens
model fidelity particularly for straight-line forward navigation. Also, Figure 8(b)
shows the vessel behavior when both motors were idle. The plot shows min-
imal movement, validating the model’s handling of stationary conditions and
confirming minimal drift in the absence of exogenous forces.

The results show that a data-driven nonlinear model, particularly one based
on neural networks, can accurately replicate complex physical behaviors of a
watercraft such as surge and yaw dynamics. The fusion and coupling of IMU,
compass, and filtered data pre-processing adds robustness to the training data
where it allows the model to generalize across different maneuvers. Some limi-
tations persist such as small lags in yaw estimation during sharp turns which is
possibly due to noisy sensor input or under-representation of aggressive maneu-
vers in the training data. However, the framework is a promising step toward
real-time control and navigation of autonomous surface watercraft.

5 Conclusions

This study presented a novel approach to developing dynamical models for sur-
face ocean vehicles using machine learning, specifically neural networks trained
on filtered sensor data. The boat at hand was modeled with an empirical,



12 N. Xiros et al.

reduced-order state-space model to depict planar kinetics of the boat by means of
her forward and yaw turning dynamics in a body-fixed frame of reference. Par-
ticularly, the system identification method accurately modeled surge and yaw
behaviors, validated through real-world experiments and simulations. The pro-
posed model effectively maps motor inputs to vessel states, laying the ground-
work for further applications in guidance, control, and cooperative swarming.
Future work will focus on expanding the model to additional degrees of freedom
and integrating real-time feedback for autonomous path planning.

Acknowledgments. The authors wish to acknowledge the continuing support pro-
vided in the H2theFuture framework funded by Greater New Orleans Development
Foundation (08-79-05681 – 03)/U.S. Economic Development Administration (08-79-
05681). We would also like to acknowledge Jonathan Freels for constructing the water-
craft and running the tests to gather the data used within the paper.

Disclosure of Interests. The authors have no competing interests.

References

1. Fossen, T.: Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley & Sons (2011)

2. Freels, J.P., Xiros, N., Trejos, M.A.: Simulation model development and
calibration of surface watercraft dynamics using neural networks and ma-
chine learning. In: ASME International Mechanical Engineering Congress
and Exposition. vol. Volume 5: Dynamics, Vibration, and Control (2024).
https://doi.org/10.1115/IMECE2024-147065

3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016),
http://www.deeplearningbook.org

4. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural networks 2(5), 359–366 (1989)

5. Jagtap, A.D., Karniadakis, G.E.: How important are activation functions in regres-
sion and classification? a survey, performance comparison, and future directions.
Journal of Machine Learning for Modeling and Computing 4(1), 21–75 (2023)

6. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014), https://api.semanticscholar.org/CorpusID:6628106

7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

8. Sharma, S., Sharma, S., Athaiya, A.: Activation functions in neural networks. Inter-
national Journal of Engineering Applied Sciences and Technology 4(12), 310–316
(2020). https://doi.org/10.33564/IJEAST.2020.v04i12.055

9. Soydaner, D.: A comparison of optimization algorithms for deep learning. Inter-
national Journal of Pattern Recognition and Artificial Intelligence 34(13) (2020).
https://doi.org/https://doi.org/10.1142/S0218001420520138

10. Szandała, T.: Review and comparison of commonly used activation functions for
deep neural networks. In: Bhoi, A.K., Mallick, P.K., Liu, C.M., Balas, V.E. (eds.)
Bio-inspired Neurocomputing, pp. 203–224. Springer Singapore (2020)

11. Xiros, N.I., Aktosun, E., Loghis, E.C.: Distributed control of au-
tonomous watercraft dynamics using physicomimetics and robust syn-
thesis for disturbance rejection. Franklin Open 7, 100099 (2024).
https://doi.org/https://doi.org/10.1016/j.fraope.2024.100099



Title Suppressed Due to Excessive Length 13

12. Zaknich, A.: Principles of adaptive filters and self-learning systems. Springer Sci-
ence & Business Media (2005)


