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Abstract. We study the evolution of interface instabilities between New-
tonian and shear-thinning fluids in a planar Hele-Shaw cell. This work
builds upon a two-dimensional gap-averaged model previously developed
for flow simulations involving power-law fluids in such geometries. The
focus is on interfacial instability, viscous fingering dynamics, and quan-
tifying the growth and suppression mechanisms governing perturbation
evolution, specifically the growth rate of an initially perturbed fluid-fluid
interface.

We conduct gap-averaged simulations using the CFD software Open-
FOAM, and track the spatiotemporal evolution of an initial sinusoidal
fluid-fluid interface. We compare the growth or decay rate of the initial
perturbation amplitude to available analytical (linear stability) result for
generalized Newtonian fluids. The results demonstrate good agreement
between the 2D simulations and the theoretical linear stability analy-
sis for Newtonian fluids, while showing notable deviations for power-law
fluids, reflecting the added complexity of non-Newtonian behavior.

The influence of key parameters on the stability and dynamics of viscous
fingering is systematically investigated, including rheological properties
of power-law fluids such as the consistency index k and flow behavior in-
dex n, interfacial tension, and effective friction pressure gradients at the
interface. For power-law fluids, interface stability is strongly influenced
by the interplay between k and n. Stronger shear-thinning behavior,
associated with lower n, enhances stability by increasing the effective
viscosity at low shear rates, while lower k values reduce flow resistance,
promoting instability and the development of viscous fingers. The effec-
tive friction pressure gradient at the interface also plays a critical role in
driving instability, where a higher positive gradient promotes the devel-
opment of viscous fingers, particularly under conditions of varying fluid
rheology.

Keywords: Viscous Fingering, Power-Law Fluids, Hele-Shaw Cell, In-
terface Instability
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1 Introduction

Interfacial instabilities play a crucial role in various fluid dynamics problems,
particularly in multiphase flows where the stability of the interface between
immiscible fluids significantly impacts flow behavior. Classical works, such as
Saffman and Taylor’s stability analysis of viscous fingering [1], established foun-
dational theories demonstrating how viscosity contrasts can drive instabilities
at fluid interfaces. Building on these advancements, subsequent studies have ex-
panded the analysis to encompass diverse geometries, flow conditions, and fluid
rheologies, including both Newtonian and non-Newtonian fluids [2, 3, 4, 5, 6].

These interfacial instabilities are particularly relevant in oil recovery pro-
cesses, where unfavorable viscosity ratios between the displacing and displaced
fluids can lead to inefficient sweep and the formation of unstable fingering pat-
terns, reducing displacement efficiency. Salmo et al. [7] have improved the mod-
eling of immiscible viscous fingering in porous media by incorporating fractional
flow-based approaches that better capture finger evolution. Their study showed
that these methods can predict water saturation distributions within fingers and
adjust underlying relative permeability functions, resulting in more physically
consistent representations of unstable displacements.

Recent research has further highlighted the complex interplay between fluid
dynamics, flow conditions, and geometric controls in governing instability regimes.
Experimental studies on pressure gradients near interfaces during viscous fin-
gering [8] and investigations into the dynamics of instability in displacement
fronts [9] underscore how fine-tuning flow geometry and conditions can influence
interfacial stability.

For non-Newtonian fluids, particularly shear-thinning fluids, the instabil-
ity dynamics exhibit notable differences from Newtonian fluids. Experimental
studies have demonstrated that the degree of shear-thinning significantly alters
the morphology of viscous fingers. Lindner et al.[10, 11] showed that for fluids
with strong shear-thinning properties, the resulting fingers tend to be narrower
compared to Newtonian cases, an effect attributed to the reduction in effec-
tive viscosity at high shear rates. Moreover, for weakly shear-thinning fluids,
the instability can still be described using an effective Darcy’s law, whereas for
stronger shear-thinning effects, additional modifications are necessary to cap-
ture the observed deviations from Newtonian behavior. Varges et al.[12] further
demonstrated that the displacement efficiency is highly sensitive to the rheology
of the shear-thinning fluid, with lower viscosity ratios promoting more unstable
interfacial patterns. Their findings highlight that the transition from an unstable
to a stable displacement regime occurs at viscosity ratios that differ from those
observed in Newtonian displacements, emphasizing the role of strong viscosity
gradients in interfacial stability. These observations suggest that the classical
Saffman-Taylor instability framework must be revisited for shear-thinning flu-
ids, as the spatially varying viscosity field introduces additional complexity in
perturbation growth and finger morphology.

To quantitatively evaluate the stability of these systems, the growth rate of
perturbations at the interface serves as a critical metric. Mora and Manna [13] es-
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tablished a robust linear stability analysis framework that quantifies this growth
rate by deriving the linear Saffman-Taylor instability for generalized Newtonian
fluids in Hele-Shaw cells. Their methodology offers valuable insights into both
the onset of instabilities and the conditions under which they can be mitigated
or controlled. Recent studies by Lu et al. [9] expanded on this work by comparing
interface growth rates for angled Hele-Shaw cells from 3D simulations to linear
stability analysis results, demonstrating how parameters such as depth gradients
influence instability regimes.

While 3D simulations provide detailed insights into interfacial dynamics, they
are often computationally expensive, particularly when exploring a broad pa-
rameter space to observe trends and quantify the effects of key variables. To
address this limitation, Zhang et al. [14] developed a 2D gap-averaged compu-
tational framework for simulating the displacement of power-law fluids in Hele-
Shaw cells, offering improved computational efficiency compared to traditional
3D models. This model not only accurately replicated displacement evolution,
interface morphology, and viscous fingering formation but also achieved compu-
tational efficiency over 200 times greater than traditional 3D models. The rapid
computational capabilities of this 2D model enable systematic studies and direct
comparisons with theoretical predictions, facilitating a deeper understanding of
interfacial stability and the dynamics of viscous fingering. Preliminary findings
from this work identified the effective friction pressure gradients as a critical
parameter governing interface transitions, highlighting the model’s potential for
extensive parametric analyses and theoretical validation.

Building on this foundation, the current study utilizes the developed 2D gap-
averaged model to perform a detailed analysis of interfacial instabilities during
the displacement of power-law fluids in Hele-Shaw cells. The theoretical frame-
work for growth rate predictions is adapted specifically for power-law fluids by
extending the classical Saffman-Taylor model through a tailored linear stability
analysis based on the work of Mora and Manna [13]. The analytical predictions
are validated against results from 2D CFD simulations under controlled initial
conditions with well-defined wave numbers, ensuring precise and reproducible
tracking of perturbation growth.

To accurately assess instability behavior, the simulations introduce a si-
nusoidal perturbation at the initial interface, minimizing numerical artifacts
and enabling direct comparison with theoretical predictions. The dimensionless
growth rate of perturbations is systematically evaluated, providing a compre-
hensive analysis of how key parameters, such as rheological properties, effective
friction pressure gradients, and interfacial tension, affect interface stability. The
findings offer new insights into the mechanisms governing viscous fingering dy-
namics in power-law fluid displacement scenarios.

2 Linear stability analysis for power-law fluids

The theoretical framework proposed by Mora and Manna [13] provides a
mathematical formulation for linear stability analysis for generalized
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Newtonian fluids, that can be applied to a wide range of non-Newtonian fluids.
In this work, we apply their general result to the specific case of power-law
fluids, derives a growth rate expression that incorporates the rheological
properties of shear-thinning and shear-thickening fluids. The detailed
mathematical derivation is presented in the following section.

Mora and Manna [13] expressed the generalized growth rate in their Equation
35 as:

M =
(G2 −G1 − γk2)k√
G2

V2

dG2

dV2
+

√
G1

V1

dG1

dV1

, (1)

where M is the perturbation growth rate, Gi represents the unperturbed
friction pressure gradient for fluid i, γ is the surface tension, and k is the
wavenumber of the perturbation. V1 and V2 correspond to the local velocity of
the displacing and displaced fluids, respectively. These velocities are related to
the unperturbed friction pressure gradients via the constitutive equations
governing each fluid.

For the special case of Newtonian fluids, this generalized Eqn. 1 simplifies
to the following form (as presented in Equation 36 of [13]):

M =
1

η2 + η1
· kh

2

12
· (G2 −G1 − γk2), (2)

where η1 and η2 are the viscosities of the displacing and displaced fluids,
respectively, and h is the gap width of the Hele-Shaw cell.

The friction pressure gradients Gi for Newtonian fluids can be expressed in
terms of the fluid viscosities and imposed velocity U as:

Gi = −12ηiU

h2
. (3)

Substituting this expression into Eqn. 2 and normalizing by U/h, the
dimensionless growth rate is given by:

Mh

U
= M∗ =

kh

η2 + η1

[
(η1 − η2)−

γk2h2

12U

]
. (4)

Here, the term γk2h2

U , associated with interfacial tension, represents capillary
forces that suppress perturbation growth, particularly at higher wavenumbers.

For power-law fluids, the velocity U = Vi(Gi) is governed by the
relationship between the imposed velocity and the corresponding unperturbed
friction pressure gradient Gi. This relationship simplifies to:

U = Vi(Gi) =
(h/2)1+1/ni

2 + 1/ni

G
1/ni

i

k
1/ni

i

, (5)

where ni is the flow behavior index, and ki is the consistency index of fluid
i.
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The friction pressure gradient Gi can be further simplified as:

Gi = cV ni
i , (6)

where c is a constant.
Substituting this into the denominator of the original growth rate Eqn. 1

gives:

Gi

Vi

dGi

dVi
= ni

(
Gi

Vi

)2

= ni

(
Gi

U

)2

. (7)

The dimensionless form of the growth rate is derived by incorporating these
relationships into Eqn. 1, resulting in:

Mh

U
= M∗ =

(1− λ)hk − (hk)3/Ca

λ
√
n1 +

√
n2

, (8)

where M∗ is the dimensionless growth rate scaled by the imposed bulk
velocity and the gap width of the cell from growth rate M . The parameter
λ ≡ G1/G2 is the ratio of friction pressure gradients, and Ca = G2h

2/γ is the
capillary number based on the friction pressure gradient of the displaced fluid.

The theoretical growth rate results calculated using Eqn. 8 are compared
with the dimensionless growth rates obtained from computational simulations
in Section 4.

3 Computational Method

All computational simulations in this work are conducted using the developed
2D numerical gap-averaged model. Detailed information on the model’s
derivation, implementation, and validation can be found in the previous
publication [14]. The full implementation, including source code, case setups,
and documentation, is openly available in the related GitHub repository:
https://github.com/feebsssz/heleShawFoam.

In summary, the 2D numerical gap-averaging model is a computational
framework specifically designed to simulate the displacement of power-law
fluids in confined Hele-Shaw cells. The model employs a gap-averaging
technique by integrating the momentum equation over the gap-wise direction
of the Hele-Shaw cell, resulting in a two-dimensional formulation that preserves
the essential physics of three-dimensional flow behavior.

The governing equations include gap-averaged continuity and momentum
equations, where the flow field is approximated using a depth-averaged
Darcy-like velocity profile. The model incorporates the non-Newtonian
rheology of power-law fluids by adapting the effective viscosity term based on
the local shear rate and power-law parameters. Interfacial dynamics are
managed using a volume-of-fluid (VOF) approach, allowing for precise tracking
of the fluid interface and accurate capture of the evolution of viscous fingering
patterns.
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The numerical implementation is carried out in OpenFOAM, with simulations
executed on the University of Stavanger computing cluster utilizing multiple
cores for parallel computing. Each displacement simulation runs for a duration
of 20 s, with the interface evolution and perturbation growth tracked at 1 s
intervals. The collected data are then fitted to an exponential growth model to
quantify the perturbation growth rate. The methodology for tracking the time
evolution of the fluid interface is documented in detail in the verification section
of the 2D model in [14].

3.1 Geometry and Mesh configuration

The computational domain is defined as a horizontal rectangular Hele-Shaw cell
with a width of 0.05 m, a narrow gap of 0.001 m, and a total length of 0.2 m.
The mesh configuration employs 128 cells along the width direction, a single cell
in the gap direction to maintain a two-dimensional setup, and 512 cells along
the length direction.

The geometry is adapted from Lu et al. [9], whose work demonstrated
robust capabilities in capturing detailed interfacial dynamics and accurately
resolving viscous fingering patterns within Hele-Shaw cells for Newtonian fluid
displacement. Selected cases are compared against those from Lu et al. in
Sec. 4 to validate the performance of the model in predicting growth rates.

The implemented mesh configuration follows the approach established in
previous work by Zhang et al. [14], where a detailed mesh convergence study
was conducted to ensure both numerical accuracy and stability.

3.2 Controlled perturbation at initial interface

Previous studies have shown that viscous fingering typically develops only after
initial perturbations are introduced at the fluid interface. Starting with a flat
interface often makes it challenging to control instabilities, as the wavenumber
and magnitude of the perturbations tend to emerge randomly and are
influenced by numerical factors [14]. To address these challenges, this study
introduces controlled initial perturbations with well-defined wave numbers,
enabling precise quantitative comparisons with theoretical predictions from
linear stability analysis.

A single sinusoidal perturbation is applied to the initial interface to ensure
a controlled and reproducible onset of viscous fingering. The interface is defined
by a sinusoidal wave with an amplitude of 0.004 m and a wavelength of 0.05 m,
starting at a position of 0.002 m along the flow direction, corresponding to 1%
of the duct length. This setup creates a single well-defined finger at the center
of the duct, as shown in Fig. 1 at t = 0 s.

The mathematical formulation of the initial interface is expressed as y(x) =
A sin(kx) + y0,, where y(x) represents the interface position as a function of the
horizontal coordinate x, with A = 0.004 m as the amplitude, k = 2π

0.05 = 125.6
m−1 as the wavenumber, and y0 = 0.002 m as the initial vertical offset.
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The initial interface configuration is implemented using the
setAlphaFieldDict module in OpenFOAM, providing a robust and controlled
starting condition for the computational simulations.

The perturbation growth is quantified by tracking the length of the viscous
finger at each 1s time step throughout the simulation. At each step, the
perturbation length is measured as the deviation of the finger tip at the center
of the duct from the flat interface position expected in the absence of initial
perturbations. The recorded perturbation lengths over time are then fitted to
an exponential function to determine the growth or decay rate.

3.3 Fluid properties and Displacement configurations

More than 50 simulation cases were conducted for this study, broadly categorized
into two main groups: immiscible Newtonian fluid displacement and immiscible
power-law fluid displacement.

For the Newtonian fluid displacement cases, the simulations involve
fluid pairs consisting of two immiscible Newtonian fluids under varying
imposed velocities. The displaced fluid is a mineral oil with fixed properties,
including a viscosity of 0.133Pa · s and a density of 887.6 kg/m

3
. The

displacing fluid is a water-based solution with a fixed density of 998 kg/m
3
,

while its viscosity varies between 0.09 and 0.15Pa · s.
The interfacial tension between the two fluids is maintained at 0.0295mN/m

for most simulations. Additionally, to examine how surface tension influences
interfacial stability and viscous fingering behavior, a dedicated set of simulations
was performed with a fixed imposed velocity, U , varying the interfacial tension
over a broad range from 1× 10−10 to 0.09mN/m.

For the power-law fluid displacement cases, the simulations involve
fluid pairs consisting of a power-law fluid and a Newtonian fluid. The
Newtonian fluid used is the same mineral oil as in the Newtonian displacement
scenarios. The power-law fluids include aqueous solutions of xanthan gum with
a density of 998, kg/m

3
at varying concentrations, as well as a polyacrylamide

solution with a density of 996.4, kg/m
3
. Detailed power-law parameters,

including the consistency index k and the flow behavior index n for both
xanthan gum and polyacrylamide solutions, are reported in Table 1 of Zhang et
al. [14] and complemented by fluid curve measurements of xanthan gum
solutions presented in Table 2 by Amaratunga et al. [15].

In these displacement configurations, power-law fluids are used as either the
displacing or the displaced fluid, paired with mineral oil under varying imposed
velocities. To investigate the impact of interfacial tension, a fixed displacement
configuration of oil displacing xanthan gum is employed, with the interfacial
tension varied over a broad range from 1× 10−10 to 0.04,mN/m. To assess the
influence of rheological properties on interfacial stability, simulations are
conducted using mineral oil as the displacing fluid with a constant interfacial
tension of 0.133,mN/m, while the displaced fluid consists of xanthan gum
solutions at different concentrations. These solutions offer a wide spectrum of k
and n values, sourced from Amaratunga et al. [15].



8

The chosen fluid pairs and imposed conditions correspond to capillary
numbers Ca varying from 1.071 to 0.0125, excluding extreme cases where the
interfacial tension approaches zero. The ratio of friction pressure gradients
λ = G1/G2 varies significantly across cases, ranging from 12.873 to 0.423, with
the largest variations observed for different concentrations of xanthan gum
solutions. These ranges capture a broad spectrum of displacement conditions,
allowing for a systematic evaluation of how capillary forces and rheological
effects influence interfacial stability.

4 Results and Analysis

In this section, the dimensionless growth rate of the initial perturbation, M∗, is
calculated using the derived Eqn. 8 and compared with values extracted from
the interface evolution tracked in the 2D CFD simulations.

4.1 Newtonian Displacement

4.1.1 Verification

To verify the accuracy of the 2D CFD simulation results, comparisons are made
with the 3D direct numerical simulation (DNS) results from Lu et al.[9] and their
theoretical predictions from linear stability analysis. The selected test cases 7, 8,
and 9 are from the parallel Hele-Shaw geometry, with negative, zero, and positive
perturbation growth rates. The fluid properties and imposed flow conditions for
these cases are directly adopted from Table 1 in Lu et al.[9].

The interface evolution for the three cases is presented in Fig. 1, showing
the initial interface at t = 0 s and the evolved interface at t = 20 s. When the
growth rate is negative, the interface gradually flattens over time. For the zero
growth rate case, the initial perturbation remains nearly stable with minimal
changes in morphology and a consistent viscous finger length. Conversely, in the
positive growth rate scenario, the initial perturbation grows over time, leading
to an elongation of the viscous fingers.

For a more quantitative comparison, the interface was extracted at each time
step, and the finger length was tracked. The method for tracking the finger length
is described in Sec. 3.2. The evolution of the finger length over time is shown in
Fig. 2, with comparisons to the results from Fig. 5 in Lu et al. [9].

Each figure includes two curves from Lu’s work along with the results from the
2D simulation. The red curve represents the 3D model simulation results, while
the black curve shows theoretical predictions from the linear growth rate analysis
described in Sec. 2. The blue curve illustrates the outcomes of the 2D model
simulations. As shown in the figure, the 2D simulation results for Newtonian
displacement closely match both the 3D simulation results and the theoretical
predictions reported in the literature, demonstrating the accuracy and reliability
of the developed 2D model.



9

Fig. 1. Interface evolution of cases with different perturbation growth rates. The
corresponding growth rate values, including comparisons with theoretical predictions,
are provided in Fig. 2.

4.1.2 2D Simulations vs. Linear stability analysis

The dimensionless growth rate of the perturbation from 2D simulations, M∗, is
calculated by normalizing the growth rate, M , using the imposed velocity, U ,
and the gap width of the Hele-Shaw cell, h, as M∗ = Mh

U . This normalization
provides a consistent, dimensionless metric that allows for direct comparison
between the simulation results and the theoretical predictions from the linear
stability analysis using Eqn. 2.

Figure 3 compares the 2D simulation results with the linear stability
analysis as a cross-validation between the computational and analytical
approaches. As shown in the figure, there is a strong correlation between the
two methods, with the linear fit of M∗ from simulations against M∗ from the
linear stability analysis showing a slope of 0.9072 and R2 of 0.9998. This close
agreement is consistent across a broad range of imposed velocities, fluid
viscosities, and interfacial tension conditions, demonstrating the accuracy and
reliability of the developed 2D model in capturing interfacial instability
dynamics.

4.1.3 Influence of key parameters on perturbation growth rate

To analyze how key parameters influence the perturbation growth rate, the
sensitivity of M∗ to changes in interfacial tension (γ) and the effective friction
pressure gradient component is systematically examined. These parameters
represent to distinct physical effects represented in the growth rate equation
(Eqn. 2), contributing to either the stabilization or destabilization of the fluid
interface.

The theoretical predictions from linear stability analysis are included
alongside the simulation results in Fig. 4. The results from simulations and
linear stability analysis closely follow the same trend, effectively capturing the
dependence of M∗ on interfacial tension and friction pressure gradients.
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Fig. 2. Linear stability analysis verification for the finger length
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Fig. 3. Comparison of dimensionless growth rate M∗ from 2D simulations and linear
stability analysis for Newtonian displacement, including cases with varying imposed
velocities, viscosities, and interfacial tension.

The first plot in Fig. 4 shows the influence of interfacial tension on the growth
rate. Higher interfacial tension values consistently reduce M∗, demonstrating a
stabilizing effect. This behavior is governed by the surface tension term γk2 in
Eqn. 2, which introduces a smoothing force at the interface, particularly effective
in dampening high-wavenumber perturbations. The results emphasize the critical
role of interfacial tension in counteracting instability driven by viscosity contrast
and in maintaining a flatter, more stable interface.

The second plot of Fig. 4 presents the relationship between M∗ and the
effective friction pressure gradient component (G2−G1−γk2). A strong positive
correlation is observed, demonstrating that a larger positive pressure gradient
enhances instability by driving the displaced fluid more aggressively through the
Hele-Shaw cell. This finding is consistent with previous results reported by Zhang
et al. [16], as the effective friction pressure gradient represents the net driving
force for perturbation growth. When the effective friction pressure gradient is
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Fig. 4. Effect of interfacial tension and effective friction pressure gradient on the
dimensionless growth rate M∗ for Newtonian fluid.

negative or approaches zero, the system transitions toward stability, effectively
suppressing the development of viscous fingers.

4.2 Power-Law Fluid Displacement

For power-law fluids, a similar approach is applied to evaluate the dimensionless
growth rate, M∗. The growth rate from 2D simulations is extracted using the
same methodology as for Newtonian fluids, while the theoretical growth rate for
power-law fluids is calculated using Eqn. 8 derived in Section 2.
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4.2.1 2D simulations vs. Linear stability analysis

The comparison between the 2D simulation results and the linear stability
analysis is shown in Fig. 5.

Fig. 5. Comparison of dimensionless growth rate M∗ from 2D simulations and linear
stability analysis for power-law fluids, including various fluid pairs and conditions with
different interfacial tensions and power-law parameters k and n.

Unlike the Newtonian fluid cases, which demonstrated near-perfect alignment
between 2D simulations and linear stability analysis, the power-law fluid results
exhibit a more scattered distribution around the 1-to-1 line. While the overall
trend remains linear, significant deviations are observed, particularly in scenarios
with variable interfacial tension and differing power-law parameters k and n.

This scatter indicates that the linear stability analysis for power-law fluids
may not fully capture the complexities observed in the 2D simulations. The
discrepancies are particularly pronounced under conditions of high non-linearity,
such as extreme values of the flow behavior index n or cases with substantial



14

variations in interfacial tension. These findings suggest that while the linear
theory provides a useful first-order approximation, the displacement of power-
law fluids in Hele-Shaw cells involves additional dynamics. These dynamics are
likely influenced by non-linear effects and complex fluid rheology, which are not
fully addressed by the current linear stability model.

Furthermore, a known limitation in the 2D gap-averaged model could
contribute to the underestimation of M∗ in power-law fluid cases. As noted
in [14], the evaluation of ∇0 · τ in Eq. (9) does not fully account for cross-gap
shear when computing τ , leading to an effective viscosity that is higher than
expected. This may explain the reduced perturbation growth rate observed in
the 2D simulations, as shown in Fig. 5. Since this issue primarily affects
shear-dependent viscosity calculations, it does not impact Newtonian fluids,
resulting in a better agreement between the 2D model and theoretical
predictions for Newtonian cases, as shown in Fig. 3. Addressing this limitation
would require a more refined treatment of the cross-gap shear effect to improve
the accuracy of perturbation growth rate predictions for power-law fluids.

4.2.2 Influence of key parameters on perturbation growth rate

The dimensionless growth rate of perturbations, M∗, for power-law fluids is
governed by a complex interplay of parameters, as defined in Eqn. 8. The key
influencing factors include the ratio of friction pressure gradients λ, the
interfacial tension γ, and the rheological properties represented by the flow
behavior index n and the consistency index k. The impact of these parameters
on M∗ is systematically examined.

The top plot in Fig. 6 shows the sensitivity of the growth rate to changes in
the ratio of friction pressure gradients, expressed as 1

λ = G2

G1
. The results show

that when 1
λ is above unity, M∗ is positive, indicating that the perturbation

grows over time. Conversely, when this ratio is below unity, M∗ is negative,
suggesting that the interface transitions to a stable regime where perturbations
decay. This behavior aligns with the findings of Zhang et al. [14], where the
transition from a flat interface to viscous fingering occurred when the ratio of
friction pressure gradients approached unity (λ ≈ 1). Note that both the
theoretical predictions and 2D simulation results exhibit a similar logarithmic
dependence of M∗ on 1

λ , consistent with the trend observed for Newtonian
fluids in Fig. 4, where the theoretical growth rate also follows a logarithmic
relationship with the effective friction pressure gradient.

The second plot in Fig. 6 shows the effect of interfacial tension on the
growth rate. Consistent with the behavior observed in Newtonian fluids, higher
interfacial tension values lead to a reduction in M∗, promoting interface

stability. This stabilizing influence stems from the surface tension term (hk)3

Ca in
Eqn. 8, which increases with higher γ and dampens the growth of small-scale
perturbations. The results confirm that surface tension acts as a smoothing
force, particularly effective in suppressing high-wavenumber perturbations and
enhancing interface stability. Comparison between theoretical predictions and
2D simulations shows that while M∗ decreases approximately linearly with
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increasing interfacial tension in the linear analysis, the 2D simulation results
exhibit a weaker dependence at lower interfacial tension values and overpredict
the growth rate at higher interfacial tensions.

The third plot in Fig. 6 examines how the flow behavior index n influences the
growth rate. Both the theoretical predictions and 2D simulation results follow
a similar linear trend, showing a steady increase in M∗ with n. The results
indicate that higher values of n generally lead to increased perturbation growth
rates, while lower n values enhance stability. However, the discrepancy between
theory and simulation is more pronounced at lower n values, where the 2D
simulations predict lower growth rates compared to theoretical expectations. As
n increases and the fluid behavior approaches Newtonian-like characteristics, the
difference between the theoretical and simulated results diminishes, leading to
better agreement. One possible reason for this discrepancy is that the 2D gap-
averaged model does not fully account for cross-gap shearing effects, resulting
in an overestimation of viscosity in the shear-thinning regime.

The bottom heatmap in Fig. 6 provides insights into the combined effects
of the consistency index k and the flow behavior index n on M∗. The results
show a clear trend where higher k and lower n values contribute to increased
growth rates. The combination of high k and low n leads to the highest growth
rates, as the high baseline viscosity increases viscosity contrast, while the strong
shear-thinning behavior enhances interface deformation under stress. This dual
effect promotes instability development, making the interface more susceptible to
viscous fingering and perturbation growth during fluid displacement processes.

5 Discussion

In this work, the analysis of perturbation growth rates in both Newtonian and
power-law fluid systems within Hele-Shaw cells provides valuable insights into
the parameters that influence viscous fingering dynamics. The 2D computational
simulations are compared with the linear stability analysis to evaluate accuracy
and reveal key stability mechanisms.

5.1 Newtonian vs. Power-law fluid

The perturbation growth rate, M∗, for both Newtonian and power-law fluid
systems is primarily governed by three critical parameters: interfacial tension γ,
the viscosity ratio (or its equivalent rheological parameters for power-law fluids),
and the effective friction pressure gradient. These parameters influence whether
the interface remains stable or transitions into a viscous fingering regime.

For Newtonian fluids, higher interfacial tension consistently promotes
stability by suppressing small-scale perturbations through the γk2 term in the
growth rate equation. This effect smooths the interface and dampens
high-frequency disturbances, reducing the likelihood of viscous fingering. The
viscosity contrast between the displacing and displaced fluids also plays a
critical role; a larger viscosity contrast, where the displacing fluid has a
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significantly lower viscosity, destabilizes the interface by increasing M∗ and
promoting viscous finger growth. Additionally, the effective friction pressure
gradient is a key factor influencing the growth rate. Positive friction pressure
gradients drive instability by amplifying perturbations, while negative or
balanced gradients contribute to a stable interface.

For power-law fluids, similar trends are observed, but the behavior is
further modulated by the fluid’s rheological properties, specifically the
consistency index k and the flow behavior index n. The interplay between k
and n introduces complexity not present in Newtonian fluids. Lower n values,
indicating stronger shear-thinning behavior, enhance stability by increasing the
effective viscosity at lower shear rates, dampening perturbation growth.
Conversely, lower k values, which indicate lower effective viscosity, promote
instability by reducing flow resistance and facilitating the development of
viscous fingers. The combined effect of k and n is particularly evident in the
heatmap analysis, demonstrating how a balance between these parameters
determines whether the interface remains stable or undergoes fingering. Similar
to Newtonian cases, higher interfacial tension contributes to stability by
reducing M∗. The effective friction pressure gradient ratio also controls
whether perturbations grow or decay, directly impacting whether the interface
remains stable or transitions to a fingering pattern.

Overall, while both fluid types share foundational stability mechanisms,
such as the stabilizing influence of interfacial tension and the critical role of
friction pressure gradients, the rheological complexity of power-law fluids
introduces additional control through the k and n parameters. Unlike
Newtonian fluids with constant viscosity, power-law fluids dynamically adapt
their effective viscosity to flow conditions. The flow behavior index n
introduces shear-thinning or shear-thickening effects, offering a more complex
mechanism that can either dampen or enhance instability depending on the
fluid’s response to shear.

5.2 2D Model vs. Linear stability analysis

While the 2D numerical model aligns well with the linear stability analysis for
Newtonian fluids, discrepancies are more pronounced in power-law fluid cases.
The linear stability analysis captures the general trend of stability versus
instability, but deviations arise in cases involving strong shear-thinning effects
or significant variations in interfacial tension. The scatter observed in the
comparison plot in Fig. 5 suggests that additional factors influence the
perturbation growth rate beyond what is accounted for in the theoretical
model.

One potential explanation for these discrepancies is the known limitation in
the 2D gap-averaged model when computing the shear stress divergence, ∇0 · τ ,
as discussed in [14]. In power-law fluids, this calculation does not fully account
for cross-gap shear, leading to an overestimation of effective viscosity and,
consequently, a reduced perturbation growth rate in the 2D simulations. This
issue is absent in Newtonian fluids, where viscosity remains constant, allowing
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for a strong agreement between the 2D model and the linear stability analysis
in that limit.

Thus, while the linear stability model does not incorporate all non-linear
effects present in the simulations, the observed discrepancies in power-law cases
are likely influenced by limitations in the 2D model rather than inherent
inaccuracies in the theoretical framework. Addressing these limitations in the
2D model, particularly in how it handles shear-dependent viscosity
calculations, would provide a clearer assessment of the predictive accuracy of
the linear stability analysis in non-Newtonian fluid systems.
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Fig. 6. Effect of key parameters on the dimensionless growth rate M∗ for power-law
fluids: (Top) Ratio of friction pressure gradients 1

λ
, (Second) Interfacial tension, (Third)

Flow behavior index n, (Bottom) Combined influence of consistency index k and flow
behavior index n.


