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Abstract. The rapid development of artificial intelligence has brought transform-
ative opportunities to the field of structural health monitoring (SHM) for civil 
infrastructure. Recent advancements in vision-language models (VLMs) and 
large language models (LLMs) have demonstrated remarkable capabilities across 
various tasks, including image classification, object detection, semantic segmen-
tation, instance segmentation, and question-answering. These technologies ena-
ble comprehensive, efficient, and intelligent analysis of structural conditions, fa-
cilitating early detection of potential issues in complex infrastructures. This work 
explores the integration of these cutting-edge models into SHM workflows, 
showcasing their ability to process multimodal data (e.g., images, sensor data, 
and textual descriptions) and provide actionable insights. By leveraging the 
strengths of VLMs and LLMs, such as natural language understanding and ad-
vanced visual feature extraction, we propose novel applications for automated 
damage detection, anomaly assessment, and real-time monitoring. Preliminary 
results highlight the potential of these models to enhance decision-making pro-
cesses and reduce human intervention in infrastructure maintenance. This study 
will provide an overview of state-of-the-art AI methodologies, discuss their 
strengths and limitations in the context of SHM, and outline future research di-
rections for applying these technologies to improve the safety and resilience of 
modern civil infrastructure.  

Keywords: Structural health monitoring, Vision language models, Large lan-
guage models, Damage detection. 

1 Introduction 

As the process of globalization continues to deepen and the level of urbanization con-
tinues to increase, road transport infrastructure plays a crucial role in the development 
of modern society. The significance of road networks lies in their role as a vital conduit 
for economic activities across diverse regions. The state of these networks exerts a di-
rect influence on the economic development of nations, the quality of life of their pop-
ulations, and the public's safety. However, in the process of long-term use, pavement 
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inevitably develops various kinds of defects, such as cracks, potholes, rutting, loosening 
and surface settlement. These defects not only affect the comfort of road use, but also 
seriously threaten driving safety. These challenges place high demands on road man-
agement and maintenance authorities for timely maintenance. However, road mainte-
nance is a significant financial undertaking, and a considerable number of regions 
worldwide continue to grapple with the challenge of inadequate pavement defects man-
agement [1].  

The development of pavement defects is an incremental process, initiated by micro-
scopic cracks and subsequently exacerbated by the combined effect of environmental 
factors and traffic loads. Early detection and remediation of the defect can result in 
substantial cost savings in repair expenditures and prolong the lifespan of the highway. 
This “prevention is more important than cure” concept in the field of road management 
has formed a consensus, and the key to the realization of this concept is to establish an 
efficient and accurate pavement defects detection system.  

Traditional pavement defects detection mainly relies on manual inspection, and this 
method has many limitations. Firstly, manual inspection is inefficient and difficult to 
apply to a vast road network. Secondly, the detection results are greatly influenced by 
the experience and subjective judgment of the inspectors, resulting in a lack of con-
sistency in the assessment results. Furthermore, there is a safety risk associated with 
manual inspection in busy highway sections. Lastly, the manual recording and data 
management methods make it difficult to accumulate and analyze historical data, which 
is detrimental to the study of the development law of pavement defects. With the ex-
pansion of highway network scale and the improvement of maintenance standards, 
these problems become more and more prominent, and the traditional inspection meth-
ods can no longer meet the needs of modern road management. 

In recent years, due to the rapid advancements in computer vision, artificial intelli-
gence, and sensor technology, automated pavement defects detection technology has 
undergone substantial progress. Road inspection vehicles based on laser scanning, high-
resolution image acquisition and three-dimensional reconstruction have been put into 
use in some developed countries and regions [2]. However, the existing technology still 
faces many challenges. On the one hand, the accuracy of defects identification in com-
plex environments needs to be improved, such as the accuracy of defect identification 
under different lighting conditions, weather conditions, and pavement backgrounds [3]. 
On the other hand, the high cost of high-precision inspection equipment makes this 
hinders its widespread adoption, particularly in resource-constrained regions. Addition-
ally, most systems are deficient in real-time capabilities, impeding the ability to make 
immediate decisions. The data processing capacity is also constrained, which compli-
cates the analysis and mining of substantial pavement inspection data [4].  

The rise of deep learning techniques has brought new opportunities for pavement 
damage detection. Convolutional Neural Networks (CNN), and the latest visual Trans-
former model [5] have demonstrated excellent performance in the field of image recog-
nition, which provides a powerful tool for automatic pavement damage detection. Stud-
ies have shown that deep learning-based methods have been able to achieve an accuracy 
rate of over 90% in typical defects recognition tasks such as cracks and potholes, sig-
nificantly surpassing traditional computer vision methods [6]. At the same time, the 
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improvement of edge computing and mobile device computing power allows light-
weight deep learning models to be deployed on mobile platforms, creating conditions 
for real-time, low-cost pavement damage detection [5]. The development of multi-sen-
sor fusion technology, such as combining RGB images, depth information, thermal im-
aging and other multimodal data, further improves the robustness of detection and can 
adapt to more complex and changing environmental conditions [7]. However, the ex-
isting CNN-based pavement defects detection technology still faces many challenges. 
CNN and other models mainly focus on visual feature extraction and lack in-depth un-
derstanding of the semantic information of the defect, which leads to easy misdetection 
in complex backgrounds. In addition, the traditional deep learning models usually re-
quire a large amount of labeled data for training, and the acquisition of high-quality 
labeled data for pavement defects is costly. Finally, existing models tend to be opti-
mized for specific types of diseases and lack the general ability to deal with diversified 
defects [8].  

The development of Vision-Language Models (VLMs) has introduced a novel ap-
proach to addressing these challenges, representing a significant advancement in the 
field of Artificial Intelligence (AI) [9]. VLMs leverage advanced technologies to estab-
lish a profound correlation between visual content and textual descriptions by concur-
rently processing visual and linguistic data. In contrast to conventional, purely visual 
models, VLMs possess the capability to comprehend and generate natural language de-
scriptions associated with images, thereby offering a novel technical framework for the 
detection of pavement defects. VLMs acquire rich visual-linguistic knowledge through 
pre-training, which enables efficient transfer learning with very little labeled data and 
significantly reduces data annotation costs. In addition, VLMs can incorporate expert 
knowledge in the form of text into the model in conjunction with language comprehen-
sion capabilities to enhance semantic understanding of pavement defects.  Recent re-
search has demonstrated the remarkable potential of VLMs in the domain of roadway 
damage detection. Zhang and Liu [10] employed the Contrastive Language–Image Pre-
training (CLIP) model [11] for crack classification and found that it demonstrated better 
generalization ability than a specially trained CNN model on unseen datasets. Liang, et 
al. [12] used the CLIP to enhance the crack segmentation performance of neural net-
works, which greatly improved the accuracy of crack segmentation.  

However, there are fewer applications of these models in the field of structural health 
monitoring. This study aims to further explore the strengths and weaknesses of these 
models in the field of structural health detection. This study utilizes the latest Qwen 
vision language model developed by Alibaba [13] to explore its applications in scenar-
ios such as pavement damage classification, defects analysis and so on. 

The following of this paper is organized as follows: Section II introduces the Qwen 
and Llama models; Section III describes the experimental design and evaluation meth-
ods; Section IV presents the experimental results and makes a detailed analysis and 
comparison; finally, Section V summarizes the whole paper and looks forward to the 
future research direction. 



4 

2 Methodology 

VLMs represent a significant advancement in the domain of Artificial Intelligence, of-
fering a transformative approach to multimodal understanding and interaction. These 
models fundamentally change the manner in which machines interpret and analyze 
complex information across diverse domains through the seamless integration of visual 
perception and natural language processing capabilities. VLMs possess the capacity to 
concurrently process visual inputs, such as images, videos, and other visual data, as 
well as text, thereby facilitating cross-modal comprehension, inference, and generation. 
This capability provides a robust foundation for a range of application scenarios. 

Currently common VLMs include GPT-4o [14], Llama [15], and Qwen-VL [13]. 
These models can understand what is in the image and are also able to continue complex 
reasoning to answer questions. And Qwen2.5-VL, as the latest flagship VLMs series 
developed by Alibaba's Qwen team, demonstrates significant technological advances, 
and thus was chosen by us as the base model for this study.  Llama [15] was chosen as 
our comparison model. 
 
2.1 Qwen-2.5-VL Model 

Currently common VLMs include GPT-4o [14], Llama [15], and Qwen-VL [13]. These 
models can understand what is in the image and are also able to continue complex rea-
soning to answer questions. And Qwen2.5-VL, as the latest flagship VLMs series de-
veloped by Alibaba's Qwen team, demonstrates significant technological advances, and 
thus was chosen by us as the base model for this study.  
    Qwen2.5-VL incorporates a windowed attention mechanism, reducing the computa-
tional complexity of its visual encoder from quadratic to linear, thereby significantly 
enhancing inference efficiency. The model also employs dynamic resolution pro-
cessing, allowing it to process images of varying sizes in their original dimensions 
while representing object positions using actual pixel coordinates instead of normalized 
coordinates. For video processing, it introduces dynamic frame rate sampling and ab-
solute time coding, enabling more accurate comprehension of temporal information 
without incurring additional computational overhead. 
 In addition, the pre-training data scale was expanded from 1.2 trillion to 4 trillion 
tokens, incorporating more diverse content. To ensure data quality and relevance, the 
team developed an image-text data scoring system. Additionally, a comprehensive doc-
ument parsing system was designed to unify various elements, such as tables, charts, 
and formulas, into an HTML format for streamlined processing. The multilingual OCR 
dataset was expanded to improve the model's multilingual comprehension capabilities. 
Furthermore, a specialized subtitle dataset was constructed for long videos, enhancing 
the model's ability to process extended video content effectively. 
    In this paper, the processing flow using Qwen-2.5-VL is shown in Fig. 1. Initially, 
the user prompts the system to describe the category and characteristics of defects in 
the image using a cue word. Subsequently, the algorithm processes input images or 
videos containing structural damage, which may include various types of defect mani-
festations, such as structural anomalies like cracks, as illustrated in Fig. 1. The input 
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visual data and user prompts are processed by an Encoder structure, which transforms 
the raw data into standardized feature representations. The Encoder outputs feature vec-
tors that are organized into sequences, where green blocks denote text features and blue 
blocks represent image features. This multimodal feature fusion approach effectively 
integrates diverse information sources. The resulting feature sequences are then input 
into the Qwen-2.5-VL vision language model, which leverages its pre-trained vision-
language comprehension capabilities to perform an in-depth analysis of the structural 
damage presented in the input.  

 
Fig. 1. Flowchart of Structural Health Inspection Algorithm based on Qwen-2.5-VL 

    The model ultimately generates a detailed defect description, including defect type 
identification (e.g., “crack”) and a comprehensive characterization encompassing the 
defect's orientation (“horizontal”), location (“running across the middle of the image”), 
morphological features (“relatively straight path with some minor irregularities”), and 
possible causes of formation (“may have formed due to stress or wear over time”). This 
structured output equips engineers with comprehensive defect assessment information, 
facilitating informed maintenance decision-making. 
 
2.2 Llama-3.2-11B-Vision 

As a comparative model of Qwen-2.5-VL, Llama-3.2-11B-Vision is the latest gen-
eration of multimodal vision language models introduced by Meta AI [15], extended 
based on the Llama-3.2 architecture with 11 billion parameter scales. In terms of archi-
tectural design, Llama-3.2-11B-Vision utilizes the classical combination of a vision en-
coder and a language decoder, mapping visual features to the language model's repre-
sentation space via a projection layer. 

Llama-3.2-11B-Vision leverages Meta's large-scale multimodal dataset. However, 
the size and diversity of its training data differ significantly from those of Qwen-2.5-
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VL, which is trained on a dataset comprising 4 trillion tokens. In contrast, the training 
dataset for Llama-3.2-11B-Vision is comparatively smaller. Furthermore, Qwen-2.5-
VL places greater emphasis on data processing in specialized domains, such as docu-
ment comprehension and diagram parsing, and has developed a specialized document 
full-parsing dataset. These efforts provide Qwen-2.5-VL with clear advantages in han-
dling structured documents. 

3 Experiments 

3.1 Evaluation metrics 

As this study emphasizes the quality of text generation by various VLMs, we employed 
metrics from the field of natural language processing to evaluate their performance. 
Rouge-1, Rouge-2, Rouge-L, BLEU, Meteor, and Bert-score were used as our evalua-
tion metrics. 

The Rouge family of metrics (Rouge-1, Rouge-2, Rouge-L) serves as the primary 
method for evaluating the quality of text summarization and generation. Rouge-1 and 
Rouge-2 assess the overlap between the candidate text and the reference text at the 
levels of single words (unigrams) and two consecutive words (bigrams), respectively. 
In contrast, Rouge-L focuses on the longest common subsequence, which captures 
more flexible word order matches and is more tolerant of variations in sentence struc-
ture. These metrics are widely used to evaluate content coverage in summarization, 
question-answering, and text generation systems. The BLEU metric is primarily used 
in machine translation evaluation to calculate the n-gram exact match between a candi-
date translation and a reference translation. It balances accuracy and completeness by 
penalizing overly short translations and is considered a classic evaluation metric in the 
field of machine translation. In recent years, BLEU has also been applied to the evalu-
ation of other text generation tasks. Meteor, on the other hand, is a more comprehensive 
evaluation metric that not only accounts for exact word matching but also incorporates 
synonym, stemming, and paraphrase matching while considering word order. It bal-
ances precision and recall by calculating the harmonic mean, offering a fairer score for 
semantically similar yet differently worded expressions. Bert-score represents a new 
generation of evaluation metrics based on pre-trained language models like BERT, lev-
eraging contextualized word embeddings to measure the semantic similarity between a 
candidate text and a reference text. 

These metrics serve as the foundation for the evaluation of VLMs in this study.  
   

3.2 Experimental platforms 

Table 1 provides a detailed overview of the hardware and software configuration uti-
lized in this study. Regarding hardware, the computing system is equipped with an Intel 
Xeon processor as CPU and an NVIDIA A100-40GB high-performance GPU. The sys-
tem includes 72GB of RAM, offering ample memory for large-scale model execution 
and data processing. In terms of the software environment, the system operates on the 
Ubuntu 22.04 operating system and utilizes Python 3.12 as the primary programming 
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language. For deep learning applications, the system is configured with CUDA 11.8 to 
maximize GPU computing capabilities and employs PyTorch 2.1.2 as the deep learning 
framework. Additionally, the system integrates the Transformers 4.49.0 library to im-
plement and deploy various models based on the Transformer structure. 

Table 1. Software and hardware versions 

Content Version Content Version 
CPU Intel Xeon Processor (Skylake, IBRS) Cuda 11.8 
GPU Nvidia A100-40GB RAM 72GB 

OS Ubuntu 22.04 PyTorch 2.1.2 
Python 3.12 Transformers 4.49.0 

 
3.3 Dataset 

In this study, 134 images of pavement damage were selected, and their corresponding 
text descriptions were generated in the form of manual annotation. An example is 
shown in Fig. 2. In this study, we directly compare the outputs of the Qwen or Llama 
model with manually labeled results to calculate various evaluation metrics. 

 
Fig. 2. An example of the dataset  

4 Results and Discussions 

4.1 Results of different models 

Table 2 compares the performance of two VLMs, Qwen-2.5-VL and Llama-3.2-11B-
Vision, on the pavement defect detection task. Based on multidimensional evaluation 
metrics, Qwen-2.5-VL demonstrates superior performance across all six measures. In 
the Rouge-series metrics, which rely on n-gram matching, Qwen-2.5-VL achieves a 
Rouge-1 score of 0.3845, significantly surpassing Llama-3.2-11B-Vision's score of 
0.3382, reflecting a 13.7% relative advantage in word-level matching. Similarly, Qwen-
2.5-VL outperforms Llama-3.2-11B-Vision on the Rouge-2 and Rouge-L metrics, with 
scores of 0.1674 and 0.2428 compared to 0.1352 and 0.2144, representing relative im-
provements of 23.8% and 13.2%, respectively.  

On the BLEU metric, despite the overall low scores of both models (attributable to 
the differences between the defect description task and traditional translation tasks), 
Qwen-2.5-VL outperforms Llama-3.2-11B-Vision, achieving a score of 0.0533 



8 

compared to Llama-3.2-11B-Vision's 0.0476, reflecting a relative advantage of 12.0%. 
The Meteor metric further corroborates this trend, with Qwen-2.5-VL scoring 0.2595, 
significantly surpassing Llama-3.2-11B-Vision's 0.2231, an improvement of 16.3%. 
This indicates that Qwen-2.5-VL demonstrates superior performance in terms of se-
mantic completeness and accuracy. Notably, in the Bert-score evaluation, which best 
reflects the depth of semantic comprehension, the two models exhibit relatively close 
performance. Qwen-2.5-VL slightly leads with a score of 0.8874 compared to Llama-
3.2-11B-Vision's 0.8812, a marginal difference of only 0.0062. This observation sug-
gests that, while there are significant differences in surface text matching features, the 
gap in deep semantic comprehension ability between the two models is relatively small. 
This may be attributed to their shared use of advanced Transformer architectures and 
large-scale pre-training strategies, which enable both models to achieve a high level of 
semantic representation. 

Table 2. Detection results of different vision language models 

Model Rouge-1 Rouge-2 Rouge-L BLEU Meteor Bert-score 
Qwen-2.5-VL 0.3845 0.1674 0.2428 0.0533 0.2595 0.8874 
Llama-3.2-11B-Vision 0.3382 0.1352 0.2144 0.0476 0.2231 0.8812 
The comprehensive analysis reveals that Qwen-2.5-VL outperforms Llama-3.2-

11B-Vision in the defect detection task, likely due to its larger parameter size, richer 
training data, and specific optimizations for visual content understanding. 
 
4.2 Zero-shot detection capability for VLMs 

 
Fig. 3. Zero-shot classification results 

In addition to employing metrics to assess the model's performance, we evaluated the 
zero-shot classification capability of Qwen-2.5-VL. The image is input directly into 
Qwen-2.5-VL, and subsequently, the category to which the image belongs is output. 
The results are shown in Fig. 3. As demonstrated by the Fig. 3, Qwen-2.5-VL is capable 
of accurately identifying the presence of pavement defects without requiring samples 
training. This indicates that the present VLMs have strong zero-shot capability.  
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In practice, the robust zero-shot capability significantly reduces the deployment 
threshold for road inspection systems. When engineers encounter new or rare types of 
pavement damage, there is no need to collect a large dataset or train a specialized model. 
Instead, the system can directly analyze and classify the damage using existing 
knowledge. This feature is particularly crucial for addressing seasonal variations, 
unique distresses caused by extreme weather, or unknown damage types associated 
with new pavement materials. By enabling rapid analysis, it dramatically shortens re-
sponse times and allows for proactive intervention to mitigate potential safety hazards. 

 
4.3 Discussions 

Experimental results demonstrate that VLMs show significant potential in structural 
health monitoring. As shown in Section 4.1, Qwen-2.5-VL outperforms Llama-3.2-
11B-Vision across all evaluation metrics, particularly with a 23.8% relative advantage 
in Rouge-2, reflecting its superior capability in describing structural details. Mean-
while, the zero-shot capability test in Section 4.2 confirms these models' flexibility in 
accurately classifying pavement defects without specialized training, offering valuable 
applications for identifying newly emerging structural damage. 

However, VLMs still face several challenges in structural health monitoring. First, 
they show notable limitations in precise object detection and semantic segmentation. 
Second, these models encounter computational efficiency issues when processing high-
resolution images common in engineering applications, making them unsuitable for 
real-time monitoring systems. Additionally, VLMs have limited capabilities in quanti-
tative analysis (such as crack width and area measurements), excelling primarily in 
qualitative descriptions. Finally, existing models lack sufficient depth in understanding 
specialized structural health monitoring knowledge, struggling to accurately differenti-
ate between surface cracks and structural cracks or predict structural evolution under 
specific conditions. 

Therefore, future research should consider integrating VLMs with specialized engi-
neering models to leverage the strengths of both approaches, developing more compre-
hensive intelligent structural health monitoring systems. 

5 Conclusion 

This study demonstrates the promising application of vision language models in struc-
tural health monitoring. Our experiments show Qwen-2.5-VL outperforming Llama-
3.2-11B-Vision across all metrics, highlighting its effectiveness in pavement defect de-
tection. The zero-shot capabilities of these models offer particular value for field appli-
cations by eliminating the need for extensive labeled datasets. 

Despite these advantages, current VLMs face challenges including lower precision 
compared to specialized detection models, computational inefficiency with high-reso-
lution images, limited quantitative assessment abilities, and insufficient domain 
knowledge. Future research should focus on developing hybrid approaches combining 
VLMs' semantic understanding with engineering models' precision, while optimizing 
computational efficiency for real-time monitoring. As these limitations are addressed, 
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VLMs hold significant potential to transform infrastructure inspection practices 
through more accessible and comprehensive assessment tools. 
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