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Abstract. Aging bridges worldwide require frequent inspections to ensure
public safety. Traditional visual inspection methods are slow, require significant
labor, and often vary between inspectors. This research develops a new method
for automatically identifying bridge components in 3D point cloud data. We
present a multi-scale spatial position encoding framework designed specifically
for bridge structures. Our method features a BriStruc-Encoding module that
works through two main pathways: one for position information and another for
extracting local structural features. The system combines a Multi-scale Bridge
Structure Set Abstraction encoder with a Residual Attentive Feature
Propagation decoder to capture both the shape details and spatial relationships
of bridge parts. The framework uses geometric features such as linearity,
planarity, and sphericity along with measurements like local radius to
distinguish different structural elements. We tested our approach on a dataset of
highway bridges, achieving an overall mean IoU of 96.58%. Performance was
particularly strong for pier structures (98.84%) and girder components
(97.28%). Analysis shows that all structural elements were classified with over
95% accuracy, with very little confusion between different bridge parts. The
system performs consistently across various bridge types with an F1 score of
98.40%, recall rate of 98.39%, and mean accuracy of 98.31%. This automated
approach provides reliable identification of bridge components, supporting
better inspection systems and more efficient maintenance planning for
infrastructure management.
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1 Introduction

Infrastructure management, particularly bridge maintenance, has emerged as a critical
global challenge in the 21st century. Following World War II, starting in the 1950s, a
significant surge in infrastructure development was experienced across Europe, North
America, and Asia. However, recent data indicates a concerning trend: a majority of
bridges in many developed countries have surpassed their 50-year design life span [1–
4]. This widespread aging of critical infrastructure necessitates more frequent and
thorough inspections to ensure public safety [5].
Traditional bridge inspection methods, which heavily rely on visual assessments by

certified inspectors, face significant limitations in meeting these growing demands.
These conventional approaches are often time-consuming, labor-intensive, and
subject to human bias [6–8], highlighting the urgent need for automated inspection
technologies. Early efforts to address these limitations explored image recognition
combined with structure from motion and 3D integration of multiple images for
damage detection and documentation [9–11]. In response to these challenges, three-
dimensional (3D) point cloud data (PCD) has emerged as a revolutionary solution in
infrastructure inspection and management [12–14]. PCD, particularly when acquired
through light detection and ranging (LiDAR) technology, offers superior accuracy,
comprehensive spatial representation, and the capability to generate detailed digital
models for various inspection and maintenance applications.
Despite the rich geometric information contained in PCD, processing

infrastructure-scale point clouds presents significant challenges [15]. Raw point
clouds lack semantic information, making it difficult to identify and analyze
individual structural components. To address this limitation, semantic segmentation
techniques have been developed [16,17], with deep learning (DL)-based methods
demonstrating particularly promising results. Notable architectures such as PointNet
[18], PointNet++ [19], and more sophisticated approaches incorporating graph
convolutional networks [20] have shown superior performance in handling diverse
bridge structures.
However, existing approaches face several critical limitations. First, current models

are typically designed for either small-scale objects (e.g., indoor scenes) or large-scale
environments (e.g., urban streets), failing to adequately address the unique
intermediate scale of bridge structures. Second, bridges exhibit distinct structural
patterns and regular component distributions in both horizontal and vertical
directions, yet current semantic segmentation models do not effectively utilize this
inherent spatial information. Finally, many existing bridge-specific models are limited
to particular bridge types, restricting their broader applicability.
To address these challenges, this study proposes a novel multi-scale spatial position

encoding framework for bridge point cloud semantic segmentation. Our approach
introduces two key innovations: (1) a multi-scale feature learning mechanism tailored
to bridge-scale structures, (2) an explicit encoding scheme that captures both relative
and absolute spatial positions of bridge components. By incorporating spatial position
information into the feature learning process, our method better preserves the
structural relationships and geometric patterns inherent in bridge architectures.
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2 Methodology

Fig. 1 Deep learning model architectures
As shown in Fig. 1, we propose a novel point cloud semantic segmentation
framework specifically designed for bridge structures, consisting of a Multi-scale
Bridge Structure Set Abstraction encoder (MBS-SE) and a Residual Attentive Feature
Propagation decoder (RAFP).
The MBS-SE encoder effectively captures the geometric characteristics of bridge

structures by first extracting structural features from the raw xyz coordinates. These
structural features are then fused with RGB information through an attention-
enhanced MLP module, allowing the network to leverage both geometric and visual
cues. A key innovation in our encoder is the multi-scale processing approach, where
features are sampled at different radius values to capture both local details and global
context. To preserve spatial information, we implement residual connections between
the original coordinates and processed features, along with difference operations that
enhance the model's sensitivity to structural variations.
The RAFP decoder builds upon the PointNet feature propagation (FP) mechanism

while incorporating attention modules to emphasize relevant features during the up-
sampling process. Our framework employs a three-layer encoder-decoder
architecture, where features from each decoder level are concatenated in the final
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layers. This hierarchical feature fusion strategy ensures that information captured at
different scales is preserved throughout the network, leading to more accurate
segmentation results. The residual connections within the decoder further facilitate
gradient flow during training and enhance the model's ability to reconstruct fine-
grained details of bridge components.

2.1 Data Pre-processing

In the data processing phase, the preprocessing stage initially involved applying voxel
down sampling to the entire dataset to achieve uniform point cloud density. Region
block sampling was implemented locally to preserve structural information.
Furthermore, Farthest Point Sampling (FPS) was employed within the network
architecture to effectively reduce the number of points while maintaining the
structural characteristics of the bridge components (piers, parapets, girders, decks,
etc.) as illustrated in the Fig. 2. This multi-level sampling strategy ensures
computational efficiency without compromising the geometric integrity of critical
structural elements.

2.2 BriStruc-Encoding

Fig. 3 Workflow of BriStruc-Encoding module
We propose the BriStruc-Encoding module to effectively capture bridge-specific
structural characteristics in point clouds as shown in Fig. 3. This module processes
input points [B,N,3] through two parallel pathways: position encoding and local
structure feature extraction. The position encoding pathway utilizes K-Nearest

Fig. 2 Visualization of down sampling methods
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Neighbors to compute relative positions and grid-based coordinates for absolute
position encoding. Concurrently, the local structure pathway extracts 12-dimensional
features including principal direction attributes (linearity, planarity, sphericity) and
statistical measurements (radius, distances, direction consistency, and height
variations). These complementary features are fused through concatenation and
processed by a structure-aware MLP with max pooling, generating an output
representation [B,C,N] that preserves both positional and structural information
essential for accurate bridge component segmentation.

a) Original bridge PCD b) Example of K-NN search

c) Linearity feature of each point d) Local radius feature of each point
Fig. 4 Visualization of feature extraction process

As illustrated in Fig. 4, the extracted features effectively differentiate between
structural components. For instance, the linearity feature shows distinct values across
different bridge elements: pier sections exhibit low linearity (L=0.43) due to their
columnar structure, while deck sections demonstrate high linearity (L=0.55) reflecting
their elongated geometry. Similarly, the local radius feature reveals characteristic
patterns with bridge piers showing smaller radii (R=1.19) compared to the larger
values observed in deck components (R=0.89). These quantified geometric attributes
enable precise discrimination between structural elements, demonstrating the
importance of numerical feature representation for accurate semantic segmentation of
bridge point clouds.

2.3 Optimization Strategy

For model training, we employ the Adam optimizer with initial learning rate set to the
configured value, momentum parameters β₁=0.9 and β₂=0.999, and weight decay of
1e-4 to prevent overfitting. A ReduceLROnPlateau scheduler monitors validation
performance, reducing the learning rate by a factor of 0.1 when improvement plateaus
for 5 consecutive epochs. The classification task is guided by a structure-oriented loss
(SOL) function that incorporates spatial constraints defined by Structure-Oriented
Concept(SOC) [21], enabling the model to leverage the inherent structural
relationships between bridge components during training.
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3 Experiment and results

3.1 Dataset preparation

Dataset 1 - publicly available dataset

Fig. 5 Visualization of two randomly selected bridges from the benchmark dataset. Top row:
original PCD; bottom row: manually annotated PCD.

The dataset-1 utilized in this study is a publicly available benchmark dataset from
Lu et al. [22], accessible through Zenodo (https://zenodo.org/record/1240534). The
dataset comprises PCD collected from ten highway bridges in Cambridgeshire, United
Kingdom, using a FARO Focus 3D X330 terrestrial laser scanner. This dataset was
divided into two parts: eight bridges were utilized for training the semantic
segmentation model, whereas two bridges were randomly selected for framework
validation and dimension estimation, as shown in Fig. 5. This random selection
strategy was adopted to ensure unbiased evaluation and showcase the robustness and
generalizability of our proposed framework. Similar to our in-house dataset, all point
clouds in this benchmark dataset were manually annotated following a consistent five-
class classification scheme: pier, girder, deck, parapet, and others.

3.2 Implementation

The effectiveness of the semantic segmentation model was assessed using three
standard metrics: mean class accuracy (mAcc), intersection over union (IoU), and
mIoU. These metrics offer a comprehensive understanding of the model's
segmentation capabilities on both a global and class-specific basis.
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where M represents the total class number and Ni denotes the point count in class i.
The evaluation terms include true positive (TPi), indicating correctly classified points
in class i; false negative (FNi), representing points of class i incorrectly assigned to
other classes; and false positive (FPi), tallying points inaccurately classified as class i.
The model was implemented using the PyTorch framework, incorporating
PointNet++ with its multi-scale grouping strategy [18,19]. The proposed framework
was implemented in Python using the scikit-learn and Open3D libraries. The training
process utilized the Adam optimizer with an initial learning rate of 0.001 and a decay
rate of 0.0001. Model training and evaluation were conducted on a Windows-based
workstation equipped with an AMD Ryzen 9 9950X processor, 128GB RAM, and an
NVIDIA GeForce RTX 4090 GPU.

3.3 Results and evaluation

Fig. 6 shows the semantic segmentation results of our proposed method applied to
two representative bridge PCDs (Bridge 6 and Bridge 9). The visualization effectively
demonstrates the algorithm's capability to accurately classify different structural
components, with distinct colors representing bridge decks (pink), piers (green), and
other structural elements. The segmentation boundaries between components are
clearly delineated, indicating the model's strong performance in distinguishing
between adjacent structural elements with different geometric characteristics, even in
complex bridge configurations.

a) Bridge 6 b) Bridge 9
Fig. 6 Semantic segmentation results

Fig. 7 presents both the raw and normalized confusion matrices of the segmentation
results across all test datasets. The normalized confusion matrix (Fig. 7b) reveals the
exceptional performance of our approach, with all structural components achieving
classification accuracy exceeding 95%. Specifically, the model demonstrates
remarkable precision in identifying parapets (99.2%), piers (99.1%), and background
elements (98.7%), followed by girders (98.6%) and decks (95.9%). The minimal
misclassification between categories is particularly noteworthy, with the highest
confusion (3.8%) occurring between deck and parapet elements due to their
occasional geometric similarity at intersection points. This comprehensive
quantitative assessment confirms the robustness of our proposed BriStruc Encoding
framework for bridge component segmentation, providing reliable structural
identification necessary for subsequent engineering applications including
deformation analysis and damage detection.
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Table 1 presents a comprehensive quantitative evaluation. The overall performance
metrics demonstrate the exceptional effectiveness of our approach across all bridge
components. In total, our method achieves an impressive mean IoU of 96.58%, with
particularly outstanding performance on pier structures (98.84%) and girder
components (97.28%). The parapet and background elements show slightly lower but
still excellent IoU values at 95.16% and 94.99%, respectively. Furthermore, the
model exhibits remarkable consistency across other evaluation metrics, with an F1
score of 98.40%, and mean accuracy of 98.31%. These results validate the robustness
of our proposed feature extraction and segmentation framework, providing reliable
structural identification across different bridge configurations that can serve as a
foundation for subsequent engineering analyses and applications.

Table 1 Quantitative evaluation of SS in test set (unit: %)
IoU F1 Score Mean Acc.Back. Pier Girder Parapet Deck Mean

Bri-6 96.20 98.92 97.75 95.64 97.19 97.14 98.63 98.45
Bri-9 93.71 98.76 96.75 94.70 96.09 96.00 98.15 98.16
Total 94.99 98.84 97.28 95.16 96.65 96.58 98.40 98.31

4 Conclusions

This study presents a multi-scale spatial position encoding framework for semantic
segmentation of bridge point clouds that effectively addresses the unique challenges
associated with infrastructure-scale data processing. By incorporating the BriStruc-
Encoding module, our approach successfully using both positional information and
local structural features to distinguish between different bridge components with high
accuracy. The integration of relative position encoding through K-nearest neighbors
and absolute position encoding via grid-based coordinates, combined with
eigenvalue-based geometric features, has proven highly effective for capturing the
inherent structural patterns of bridge architectures.

a) Confusion matrix b) Normalized confusion matrix
Fig. 7 Confusion matrix of total result
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Experimental results demonstrate the exceptional performance, achieving an
overall mean IoU of 96.58% across all bridge components. The confusion matrix
analysis further confirms the method's robustness, revealing classification accuracies
exceeding 95% for all component with minimal misclassification between categories.
This comprehensive quantitative assessment validates that our approach effectively
overcomes the limitations of existing models by specifically addressing the
intermediate scale and unique spatial characteristics of bridge structures.
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