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Abstract. Reliability and availability analysis is crucial at the project
phase to determine whether the desired needs will be satisfied and if
design adjustments, such as adding redundancy, are necessary. Relia-
bility and availability analysis can be done at the system, equipment
and component levels. Asset managers often question whether conduct-
ing availability analysis at a system level (high level) is sufficient and
satisfactory or if a more detailed approach, considering individual com-
ponents and failure modes is required. Thus, the purpose of this study
is to model, estimate and compare availability at two different technical
hierarchy levels: equipment and components. An agent-based modelling
approach is used to estimate the reliability, availability of subsea safety
equipment. The results show that both approaches produced similar re-
sults in terms of availability, indicating that either method can reliably
predict operational availability. However, introducing more probabilis-
tic figures, such as repair times at component and failure modes levels,
makes the detailed level models more realistic compared to high-level
models.

Keywords: Simulation Modelling · Agent based Modelling · System
Availability · Equipment level · Component Level.

1 Introduction

Reliability, availability, and maintainability (RAM) analysis is essential in the
early stages of industrial projects to ensure that system performance aligns with
operational requirements [1]. These analyses help determine whether a proposed
system configuration is sufficient to meet availability targets or if modifications,
such as redundancy, are necessary [2]. Reliability and availability can be assessed
at various hierarchical levels, including the level of the system, equipment, and
components, offering different levels of detail and insight [2]. However, deter-
mining the appropriate level of detail, whether at the system level or a more
granular component and the failure mode level, remains a critical challenge for
asset managers and project stakeholders seeking to ensure sufficient accuracy for
reliable decision making [3].
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High-level analysis conducted at the system or equipment level are typi-
cally faster and less resource-intensive, but may lead to inaccurate estimates
due to the use of aggregated data and oversimplified assumptions. In contrast,
detailed analysis at the component level, while potentially more accurate, are
time-consuming, data-demanding, and costly, especially in large and complex
systems such as oil and gas platforms, where many components interact [4]. De-
spite these differences in approach, there is no clear consensus in industry or
academia on the optimal level of detail for RAM analysis, and there is a lack of
studies that compare RAM analysis at the two technical levels.

The purpose of this study is to investigate and address this issue by mod-
eling two different levels of technical hierarchy and comparing their availability
results. This includes the availability percentage, operating hours, and number
of failure events. A safety-critical equipment is carefully selected for this study,
where four distinct scenarios are modeled and evaluated: (1) equipment-level
analysis, (2) component/failure mode-level analysis, (3) equipment-level analysis
integrated with functional testing, and (4) component-level analysis integrated
with functional testing. A probabilistic experiment was also performed to cap-
ture variability and provide insight into the best and worst-case performance
outcomes.

In the following section, the simulation model and simulated scenarios are ex-
plained. Later, the results for the four scenarios are summarised and illustrated,
followed by conclusions.

2 Materials and Methods

2.1 RAM analysis

RAM analysis is an essential aspect of system design and operation, particularly
in complex industries [5]. It helps to ensure that systems perform their intended
functions reliably over their expected lifespans with acceptable maintenance re-
quirements and costs. The approach evaluates the reliability, availability, and
maintainability of a component or entire system to determine the performance
and any form of improvement that can be achieved. RAM analysis facilitates the
identification of critical failure modes, the estimation of reliability and maintain-
ability metrics over time, and the modeling of system behavior under various con-
ditions [6] [7] [8]. It also informs the development of data-driven maintenance
strategies and supports the calculation of key performance indicators such as
MTBF and MTTR, which are essential to optimize system performance and re-
duce operational risks [6], [9]. Various mathematical models and techniques have
been proposed, such as Markov modelling and Monte Carlo simulation [10].

2.2 Technical Hierarchy

Technical hierarchy refers to the structured organization of physical assets into
multiple levels, typically including systems, subsystems, equipment units, and
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components. This hierarchical breakdown facilitates clear asset identification,
classification, and data aggregation. It is widely used in industries such as oil
and gas, manufacturing, and power generation to manage asset-related informa-
tion systematically [5]. ISO 14224 [11] provides a standardized framework for
developing technical hierarchies within industrial facilities. This framework also
serves as a data structure for collecting and exchanging reliability and mainte-
nance (RM) data for equipment [12]. It emphasizes the importance of consistent
asset taxonomy and boundary definitions to ensure the comparability and in-
tegrity of RM data collected across operational units. The standard defines a
multi-level hierarchy, beginning at the installation level and progressing through
equipment classes and units down to individual components. This structure sup-
ports traceability and enables data collection at the appropriate level of detail
depending on the application [11]. Studies have highlighted the role of a well-
defined technical hierarchy in enhancing the consistency and usefulness of equip-
ment data, especially for cross-functional analysis and decision support [13]. A
key aspect of ISO 14224 is the delineation of equipment boundaries using bound-
ary diagrams, which ensure clarity in asset definitions and reduce ambiguity in
equipment classification. The implementation of technical hierarchy in complex
systems is challenging, as incomplete or inaccurate structures can result in data
inconsistencies that undermine the effectiveness of RAM analysis [14].

2.3 Agent based modelling

Agent-Based Modelling (ABM) is a computational modeling approach used to
simulate the actions and interactions of autonomous entities, or “agents” within a
defined environment [15]. These agents are characterized by individual behaviors,
rules, and attributes, enabling the modeling of complex, decentralized systems
with emergent behaviors. The approach has been applied in manufacturing sys-
tems, supply chain logistics, maintenance systems, and reliability studies due to
its flexibility in capturing dynamic and heterogeneous interactions [16]. ABM
can represent systems as collections of interrelated agents, making it suitable for
modeling complex systems with hierarchical structures such as equipment and
their components. In such applications, the relationship between an equipment
unit and its components is modeled as a parent–child agent hierarchy, where
the parent agent (equipment) interacts with and monitors the states of its child
agents (components) [17] [18]. This structure enables simulation of dependencies,
propagation of failure, and aggregation of performance at different hierarchical
levels [17].

ABM frameworks can incorporate multiple modeling techniques, such as sys-
tem dynamics and discrete event simulation, and a state chart that captures
complex system behaviors [18]. State charts are graphical representations of dis-
crete states and transitions triggered by events or conditions and can accurately
model the internal dynamics and lifecycle of agents. State charts enhance the
expressiveness of Agent-Based Modelling by enabling the definition of complex
agent behaviors, including failure modes, maintenance events, etc. In equipment-
component systems, state charts allow each component agent to transition be-
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tween operational, degraded, failed, or repair states, while the parent equipment
agent can monitor these states to determine its own availability or performance
level [19] [20].

3 Case study

The safety-critical equipment selected for this study is the Production Master
Valve (PMV) based on a real industrial case. Its failure modes were identified
and retrieved from the Failure Modes, Effects, and Criticality Analysis (FMECA)
provided from this case and cross-referenced with data from the Offshore and
onshore reliability data (OREDA) to obtain accurate failure rates and mainte-
nance parameters for modeling. The PMV is a critical safety device in oil and
gas wells, used to control and shut off the main flow of hydrocarbons. It is placed
on the Christmas tree and ensures safe operation and isolation of the well. Its
reliability is vital for safety, environmental protection, and production continu-
ity. Table 1 shows the retrieved data from OREDA related to the production
master valve.

Table 1. Obtained failure data from OREDA

Failure Modes CODE Failure Rate
/year

MTTR /hour

Loss of Containment LOC 0.00534 25
Fail to operate valve FOV 0.01971 45.6
Fail to operate valve (Seal leakage) FOV_SL 0.00919 11.4
Overload on Housing OOH 0.0632 17.4
Fail to compensate pressure FCP 0.07 22.9
Fail to relive overpressure FRO 0.07 22.9
Fail to balance external (given inade-
quate filling of Nemis oil)

FBP 0.0072 0.3

Leak through relief valve LRV 0.0418 19
Seizure of indicator SOI 0.0744 16.7
Seizure of indicator due to torsion of
spring retainer plate

SOI_DT 0.0744 16.7

Fail to provide thrust FPT 0.0913 20.3
Weld Failure WELD 0.0063 47
Fail to operate ball FOB 0.004 15.9
Fail to operate gate FOG 0.004 15.9
Internal Leakage ILU 0.0704 12.2
Fail to open FTO 0.004 15.0

The OREDA handbook is a valuable resource in the oil and gas industry be-
cause it provides reliable failure and maintenance data for offshore equipment.
OREDA is a key reference in reliability engineering and integrity management,
providing comprehensive data on offshore equipment performance, including fail-
ure modes, rates, mean time to repair (MTTR), equipment boundaries, and
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maintenance metrics. These data are collected from various operational condi-
tions across multiple companies and regions. OREDA is based on ISO 14224 to
enable collecting adequate, consistent, and valid reliability and maintainability
data for specific object types. The data has been collected across various in-
stallations and equipment models under different operational conditions, hence
it is considered a generic database. The data segregation and presentation ap-
proach makes it suitable for RAM analysis upon reasonable assumptions and
considerations.

3.1 Scenario 1: High-level model without functional testing

The first scenario evaluates the PMV as a single unit, with failure data aggre-
gated and analyzed at the equipment level rather than the level of individual
components. The behavior of the PMV can be described in two primary states:
the working state (functional) and the failed state (under repair), as illustrated
in Figure 1.

Fig. 1. Structure of the PMV at High-level (Scenario one).

In the working state, the valve is considered to actively perform its required
function, serving as an emergency safety valve within the larger subsea system,
therefore, it is expected to operate reliably and respond to emergency situations.
When the valve is no longer able to perform its required function, it transitions
to the failed state and undergoes maintenance or repair activities to restore its
functionality and return it to the working state. The PMV’s transition from the
working state to the failed state is triggered by a failure event, which is defined
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as a "rate trigger" that depends on reliability metrics expressed as a function
of time, illustrated in Table 2. In this case, the transition to the failed state is
governed by the failure rate of the valve, typically measured per year. When the
valve enters the failed state, the transition back to the working state is triggered
by a "timeout", which is the time taken to perform maintenance activities. This
trigger keeps the valve in the failed state for a specified duration, defined as the
MTTR in Table 2. Once the timeout expires and the MTTR is fulfilled, the valve
is restored to its working state.

Table 2. Model inputs for scenario 1.

States and transi-
tions

Description Values

Working State The PMV is performing its function
Failed State The PMV has failed
TS1 transition Accumulated failure rate 1.3/ year
TS2 transition MTTR 19.38 hours

3.2 Scenario 2: Detailed level model without functional testing

The second scenario models the PMV at the component level, assigning failure
modes to each individual component and providing an understanding of the
PMV’s reliability and performance. Therefore, two levels of models shall be
considered.

Fig. 2. Structure of PMV at Component-Level (Scenario two)



Title Suppressed Due to Excessive Length 7

The first level is related to the equipment level, illustrated in Figure 2 shows
several considered components such as actuator, gearbox, valve body, bonnet,
stem, gates, and seal package. All these components were simplified and ab-
stracted into one item in Scenario 1 (Figure 1). The second level is related to
the failure mode level for each component. For example, Figure 3 represents the
state chart of gearbox, where several failure modes are modelled.

Fig. 3. Structure of the PMV’s Gear Box and Failure modes.

Table 3. Model inputs for the Gear Box state chart.

States and transi-
tions

Description Values

Working State The gear box is performing its function
Failed state The gear box is failed and not its functioning
LRV transition Failure mode triggered by Failure rate 0.0418/year
FBP transition Failure mode triggered by Failure rate 0.072/year
FRO transition Failure mode triggered by Failure rate 0.07/year
FCP transition Failure mode triggered by Failure rate 0.07/year
OOH transition Failure mode triggered by Failure rate 0.0632/year
FOV transition Failure mode triggered by Failure rate 0.01971/year
LOC transition Failure mode triggered by Failure rate 0.0534/year
MTTR transition Failure mode triggered by Failure rate 22 hours

The behavior of the valve components (child agents) is integrated into the
parent agent (PMV) using conditional logic. For instance, when a component,
such as a gearbox, transitions from the working state to the failed state due to a
failure event, it triggers a predefined condition in the parent agent. As a result,
the PMV transitions from the working state to the failed state. Upon completion
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of the repair process, defined by the MTTR, the gearbox transitions back to the
working state. This transition again satisfies another predefined condition in the
parent agent, prompting the PMV to return to its working state. This behavior
is consistently applied to all valve components to ensure an accurate reflection
of the impact of the component failure. The structure and behavior of other
individual components has been illustrated and explained in detail by Botsoe in
his thesis [21].

3.3 Scenario 3: High-level model with functional testing

Scenario 3 is basically scenario 1 with functional testing. Two substates have
been introduced to the working state of the PMV, as illustrated in Figure 4:
the normal state, which is the typical operational behavior of the valve, and the
testing state, where the functionality of the valve is evaluated to ensure it meets
operational standards.

Fig. 4. Structure of the PMV at High-level with testing (scenario 3)

The introduction of these two states changes the behavior and structure of the
model. These functional tests are conducted twice a year (six months apart) as
part of a scheduled preventive maintenance activity. During these tests, the valve
temporarily switches from the normal state to the testing state. The transition
from the normal state to the testing state is a timeout trigger which is set to
occur at a fixed interval every six months. The transition back to the normal
state is also governed by a timeout trigger, which represents the time taken to
complete the functional test.
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Scenario 3 was explored because (1) the PMV is a part of the Safety Instru-
mented System (SIS), and its performance must comply with safety standards
such as IEC 61508, IEC 61511, NOG 070, and NORSOK D-010. These stan-
dards define the requirements for ensuring the Safety Integrity Level (SIL) of
the valve’s safety instrumented functions. Regular functional testing is required
to confirm the valve’s proper response under specific fault conditions or to main-
tain its integrity over time. Three primary types of tests are typically carried
out: Partial Stroke Test (PST), Full Stroke Test (FST) and Internal Leak Test.
(2) Functional testing performed on the valve introduces an additional analyt-
ical dimension, as the duration and frequency of these tests could impact the
availability and the number of hours the valve is in operation. (3) This approach
provides insights into the possibility of opportunistic maintenance, where situa-
tions in which lengthy functional testing-induced downtime could be leveraged
as a window to perform PM tasks to address potential failures pre-emptively.

3.4 Scenario 4: Detailed-level model with functional testing

Scenario 4 is basically scenario 2 with functional testing, as illustrated in Figure
5.

Fig. 5. Structure of the PMV at component level with testing (Scenario 4)

3.5 Simulation Experiment: Probabilistic Repair Time

In all scenarios considered, a constant MTTR was used to represent the time
needed to restore the valve to operational status after a failure. However, MTTR
values usually vary with a wide range due to delays and different levels of damage.
To improve the robustness and realism of the model, the constant MTTR was
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replaced by a triangular distribution to allow a range of MTTR values. This
adjustment recognizes the inherent uncertainties and variabilities in the repair
process, where repair times can vary due to factors such as the complexity of
the failure, availability of spare parts, or accessibility to failed components. In
contrast to a constant value, a triangular distribution is defined by minimum,
maximum, and most likely repair times, which allows the model to account for a
range of possible repair durations, from the best-case scenario to the worst-case
scenario. This experiment better represents real-world scenarios where repair
times rarely adhere to a single average value, yet there is limited data to capture
actual system behaviour. This experiment makes the analysis more relevant to
decision-makers who must manage and account for uncertainty for accurate risk
assessment and strategic planning.

In the probabilistic approach, it is assumed that MTTR is a minimum of
11.4 hours, a mean of 22 hours, and a maximum of 45.6 hours. After running
the probabilistic model, the resulting MTTR distribution shows a higher mean
of 24.52 hours, as shown in Figure 6.

Fig. 6. Histogram of the MTTR.

3.6 Validation Process

The model comprises input, logic, and output. The failure data retrieved from
the OREDA handbook and the participation of experts were used to ensure the
validity of the input data. The logic was derived from the generic maintenance
concept (GMC) of a case study and was confirmed by experts for precision. The
results obtained from the simulated scenarios were qualitatively validated by
engaging the case study experts.
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4 Results

The results of the four scenarios are summarised in Table 4. When comparing
the availability percentages of scenarios 1 and 2, it can be observed that the
high-level and detailed-level models provide very close results; the difference, in
this case, was about 0.1% and 53 operating hours. Comparison of availability
percentages for Scenarios 1 and 3, to observe the effect of functional tests, a
marginal decrease in availability (from 99.7% to 99.6%) and the number of oper-
ating hours recorded. Although the functional test shows an observable impact
on system availability, it emphasized that in systems where functional tests re-
quire significant amounts of time and will induce longer downtime, it can be
leveraged for opportunistic maintenance.

Table 4. Results of modelled scenarios under deterministic MTTR.

Criteria Scenario
1/High Level

Scenario 2/De-
tailed Level

Scenario 3/
High Level with
testing

Scenario 4/
Detailed Level
with testing

Availability in % 99.7% 99.6% 99.6% 99.5%
Availability in hours 87,348.06 87,295 87,208.06 87,175
Number of failure 13 14 13 14

Table 5. Results of modelled scenarios under probabilistic MTTR.

Criteria Scenario 1/
High Level

Scenario 2/De-
tailed Level

Scenario 3/
High Level with
testing

Scenario 4/
detailed Level
with testing

Availability in % 99.7% 99.4% 99.5% 99.2%
Availability in hours 87,292.97 87,072.41 87,162.96 86,932.40
Number of failure 12 17 12 17

Table 5 provides the availability figures for the four scenarios under proba-
bilistic MTTR values. In the probabilistic approach, MTTR is assumed to be
a minimum of 11.4 hours, a mean of 22 hours, and a maximum of 45.6 hours.
Compared to the deterministic MTTR conditions, it can be observed that all
scenarios explored have have been affected by the probabilistic MTTR values.
For example, the availability estimated for Scenario 3 has decreased from 99.6%
under deterministic to 99.5% under probabilistic MTTR conditions. Similarly,
for Scenario 4, there is a drop in availability from 99.5% under deterministic
MTTR to 99.2% under probabilistic MTTR conditions. However, this drop is
mainly related to the number of failure events (which increased from 14 to 17)
and partially related to the probabilistic MTTR.

The increase in the number of failures for the detailed technical level in prob-
abilistic MTTR is largely due to the frequent transitions between operating and
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failed states in situations where the repair times are shorter than average in
the probabilistic model. Each transition back to the operational state after a
repair introduces a new opportunity for failure, hence increasing the likelihood
of occurrence within each uptime period. This phenomenon in reliability the-
ory, where systems that undergo more frequent start-stop cycles due to variable
repair times, can experience cumulative stress, which can accelerate the occur-
rence of failures within each operational cycle [22]. However, the decrease in the
number of failures at the high technical level under probabilistic MTTR high-
lights a limitation of deterministic models, as they may provide oversimplified
and sometimes pessimistic reliability predictions due to their inability to account
for variability and favorable (or unfavorable) deviations from the mean[10][23].

5 Conclusions

Based on the results, it can be concluded that both approaches (high- and
detailed-level modeling) produced similar availability estimates. It can be also
concluded that high-level model at the system and equipment level is sufficient
for availability evaluation during the early project phase. However, component-
level breakdown provided more detailed insight into system behavior by captur-
ing the contribution of individual components and failure modes.

Although the equipment-level approach effectively captures essential reliabil-
ity metrics without the complexity of system decomposition, it lacks the granu-
larity needed to assess specific failure behaviors. This limitation reduces its use-
fulness for informing proactive maintenance decisions or tailoring maintenance
strategies during operational phases. The component-level approach supports
more informed asset management by enabling precise failure identification and
providing data to support the prioritisation of monitoring efforts to component
and failure modes that have a significant impact on the overall system perfor-
mance.

The introduction of probabilistic variation in the MTTR highlighted the
limitations of fixed-value assumptions in deterministic models. Although deter-
ministic models offer a simplistic approach to establishing a baseline, they fail
to capture the inherent variability and uncertainty of real-world maintenance
activities. The probabilistic approach, although it produces slightly lower avail-
ability and operational time, aligns more closely with the realistic nature of
industrial systems and provides a more accurate basis for reliability assessment
and maintenance planning [24].
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