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Abstract: With the acceleration of urbanization, the safety and reliability of water supply pipeline systems are becoming more and more important. Pipeline leakage not only leads to the waste of water resources, but also may cause a series of problems such as ground collapse and environmental pollution. The purpose of this paper is to explore the multiple leakage signal detection method of water supply pipeline based on machine learning. Through the acquisition and analysis of pipeline leakage signals, combined with machine learning algorithms, the accurate identification of different types of leakage signals is realized. In the study, we first collect the vibration and other signals generated when the pipeline leaks, and then preprocess these signals, including data amplification, feature extraction, and other steps. Then, we selected a variety of machine learning algorithms, such as Support Vector Machine (SVM), Dragonfly Algorithm-Random Forest (DA-RF), and Long Short-Term Memory Network (LSTM), to classify and recognize the preprocessed signals. The experimental results show that the adopted DA-RF model can effectively detect multiple leakage signals in water supply pipes with high accuracy. This study provides a new technical means for leakage detection in water supply pipes, which has a broad application prospect.
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1     Introduction
Water supply network is an important infrastructure of the city, the heart of the city operation, and the leakage of its pipeline is the most painful problem. At present, the main detection methods based on software have real-time transient model method [1], negative pressure wave method [2], pressure point analysis (PPA) [3], mass balance method, flow rate and pressure change method [4] and other methods, based on the hardware side of the vibration sensing detection, distributed fibre optic sensors [5], ground-penetrating radar method [6], listening to the sound of the leakage detection method [7] and other methods, due to the water supply pipelines are often buried deep underground, the environment is complex, there are a variety of noise interference, and it is too difficult to collect high-quality data [7] and so on. The environment is complex, there is a variety of noise interference, and the difficulty of collecting high-quality data is too large [8], the traditional methods for the detection of buried pipeline leakage identification of long time, operational difficulties, high cost. Due to the rise of artificial intelligence in recent years, combining various processing methods based on hardware and software with artificial intelligence has become the main research direction at present, and the method effectively reduces the problems of detection and identification time and accuracy.
With the passage of time, the pipeline small leaks if not found in time, the passage of time, slowly develop into a large leak, and then endanger personal safety, if we can find the pipeline in time there is a small leak, and give timely repair, so that we can avoid the loss of human and financial resources. However, with the advantages of pipeline detection equipment is convenient, fast, and can effectively detect each situation in the pipe, the rapid development of pipeline detection equipment is the current mainstream development trend [9]. At this stage, the classification algorithm and the pipe equipment detection of the two technologies combined to achieve high accuracy, high efficiency intelligent detection, to improve the intelligent level of the pipe detection industry and the detection ability and efficiency has an important significance, but also conducive to the water supply pipeline network maintenance and overhaul.
The paper is organized as follows: part II describes the construction of the model in detail and gives the pseudo-code for easy viewing. In Part III, three leakage signals are simulated to verify the validity of the DA-RF model; in Part IV, foot-size tests are performed and four denoising methods are applied, and finally, the model and methods are further validated and the metrics of other models are compared; and in Part V, conclusions are drawn.
2     Model
2.1     Random Forest
Random Forest is an integrated learning model, mainly based on decision trees, which improves the overall performance by combining multiple models. In the context of water supply networks, Random Forest has been chosen as the base model for signal classification because it can be better used as a classification task due to its advantages such as overfitting resistance, high robustness, parallel learning, and feature importance assessment [10].
2.2     Dragonfly Algorithm
The dragonfly algorithm is similar to particle swarm optimization (PSO), fish swarm algorithm (AFSA), ant colony optimization algorithm (ACO), sparrow search algorithm (SSA) and other algorithms, all of which are based on the successful development of population intelligence optimization algorithms inspired by the behavioural activities of animals in nature, the dragonfly algorithm was proposed by Mirjalili in 2016, which is based on the principles of separation (avoiding collisions between individuals), alignment (maintaining individual speeds) and collision (avoiding collisions between individuals). ), alignment (keeping individual speeds consistent with the surrounding group), aggregation, predation, and enemy avoidance, avoiding local optimal solutions to dynamically find the global optimal solution [11], where the position update formula is
                  (1)
Where: , , are the weights of the three behaviours of separation, alignment and aggregation respectively; ，are the attractiveness of food and natural enemies respectively.
2.3     Random forest optimised by Dragonfly algorithm
Due to the data mismatch, the original speech signal belongs to the high-dimensional time series, Random Forest can not be directly on the speech processing, we have the speech signal characteristics of the time domain, frequency domain analysis of the data and other pre-processing, the high-dimensional signals are converted to one-dimensional information, and Random Forest in the water supply pipe pre-processing data classification, the performance of its main dependence on the hyper-parameters of a choice, no optimisation, the key parameters n _estimators, max_depth, max_features, and min_samples_split all need to be selected autonomously within the appropriate range.
[bookmark: _Ref192755850]Table 1.Optimisation range of key parameters of random forests
	Key parameters
	Optimisation Scope

	n_estimators
	（50，500）

	max_depth
	（3，20）

	max_features
	（0.1，1.0）

	min_samples_split
	（2，20）


[bookmark: _Ref192756028]Table 2.Dragonfly algorithm parameter values
	Key parameters
	Optimisation Scope

	population_size
	20

	max_iterations
	50


In order to solve the problem of optimal selection of key parameters when using random forests, this paper establishes an algorithm based on the dragonfly algorithm for optimising the parameters of random forests to find out the optimal hyper-parameter combinations, and the study provides pseudo-code of the algorithm in order to facilitate the detailed description of the optimised algorithm. As shown in Pseudo-code 1, by assuming the dragonfly optimisation algorithm, we set the value space of each parameter as in Table 1; randomly generate dragonfly individuals, where each individual is represented as a set of parameter combinations; define the fitness function, and use the accuracy rate, false alarm rate, and F1 score as the fitness values to cross-validate the performance of the model after using the individual; and, in the iterative optimisation, according to the rules of the dragonfly algorithm described above (Separation Alignment, Aggregation, Predation, Avoidance ) to update the individual (parameter combination), gradually approaching the optimal parameter combination; we set a maximum number of iterations, as shown in Table 2, the fitness to reach a convergence state when the update is over, at this time the parameter combination we call as the optimal parameter combination.

	Algorithm 1: Dragonfly-Optimized Random Forest (DA-RF)

	1    Input: Training data \( (X, y) \)  
           Hyperparameter search space \( \text{param\_bounds} \)  
           Population size \( N \), maximum iterations \( T \)  
           Behavior weights \( s, a, c, f, e \), inertia weight \( w \)   
2   Output: Optimized hyperparameters \( \theta^* \), best accuracy \( \text{Acc}^* \) 
3   Initialize population \( P = \{ \theta_1, ..., \theta_N \} \) with random parameters within \( \text{param\_bounds} \)  
4   Initialize global best\( \theta^* \leftarrow \emptyset \), \( \text{Acc}^* \leftarrow 0 \) 
5     for\( t = 1 \) to \( T \) do  
6       for each individual \( \theta_i \in P \) do 
7          Compute fitness \( \text{Acc}_i = \text{FitnessFunction}(\theta_i, X, y) \)  
8          if \( \text{Acc}_i > \text{Acc}^* \) then  
9            \( \theta^* \leftarrow \theta_i \)  
10           \( \text{Acc}^* \leftarrow \text{Acc}_i \)  
11        end if  
12     end for 
13    for each individual \( \theta_i \in P \) do  
Find neighbors \( \mathcal{N}_i \) within radius \( r \)
Compute behavior vectors:  
            Separation:  
             \( S_i = -\sum_{j \in \mathcal{N}_i} (\theta_i - \theta_j) \)  
            Alignment:  
             \( A_i = \frac{\sum_{j \in \mathcal{N}_i} v_j}{|\mathcal{N}_i|} \)  // \( v_j \): velocity of neighbor \( j \)  
            Cohesion:  
             \( C_i = \frac{\sum_{j \in \mathcal{N}_i} \theta_j}{|\mathcal{N}_i|} - \theta_i \)  
            Attraction to food (best solution):  
             \( F_i = \theta^* - \theta_i \)  
            Distraction from enemy (worst historical solution):  
             \( E_i = \theta_{\text{worst}} - \theta_i \)  
11:        Update velocity \( \Delta \theta_i \):  
             \( \Delta \theta_i^{(t)} = sS_i + aA_i + cC_i + fF_i + eE_i + w\Delta \theta_i^{(t-1)} \)  
12:        Update position:  
             \( \theta_i^{(t+1)} = \theta_i^{(t)} + \Delta \theta_i^{(t)} \)  
13:        Apply parameter bounds:  
            \( \theta_i^{(t+1)} \leftarrow \text{Clip}(\theta_i^{(t+1)}, \text{param\_bounds}) \) 
15      end for  
16    end for  
17     Train final model \( \text{Model}^* = \text{RandomForest}(\theta^*) \)  
18  return \( \theta^*, \text{Acc}^* \)  


3     Simulation
In that study, we first verified the feasibility of the model by creating an analogue signal and classifying that analogue signal using the established DA-RA model by performing feature extraction on various types of signals.
3.1     Leakage Signal Simulation
According to the actual leakage situation, fewer studies have been conducted to classify the degree of leakage, mainly focusing on whether the leakage, to address this issue, the study established three categories of simulated signals. Generally small leakage signals have low frequency and low noise intensity, so we use sinusoidal signals with random noise for simulation, in which the frequency range is set to 20~50 Hz and the noise intensity range is set to 0~0.5 dB. Generally medium-sized leakage signals have neither high nor low frequency, and the noise intensity is neither high nor low, so we use FM signals with random noise for simulation, in which the starting frequency range is set to 50~50 Hz and the noise intensity range is set to 0~0.5 dB. The starting frequency range is set to 50~100Hz, the ending frequency range is set to 100~200Hz, and the noise intensity range is set to 0~1.0 dB. Generally, the large leakage signal has a high frequency and a large noise intensity, according to which we use a square wave signal with random noise for simulation, and the frequency range is set to 200~300Hz, and the noise intensity range is 0~1.5 dB. The sampling frequency is set to 1000Hz, and the time is set to 1000Hz, and the time is set to 1000Hz. The sampling frequency is set to 1000 Hz, and the time is 1 s. Since here we actively add noise and various signals to simulate the leakage signal, we do not consider denoising here, and subsequently do the denoising process only for the real signals collected.
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[bookmark: _Ref192755239]Fig. 1. small leakage signal (a)Time domain (b)Frequency domain
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                     (a)                                             (b)
[bookmark: _Ref192755425]Fig. 2. moderate leakage signal (a) Time domain (b) Frequency domain
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[bookmark: _Ref192755540]Fig. 3. Large leakage signal (a) Time domain (b) Frequency domain
We took 120 sets of each category according to the set range, for a total of 360 sets of analogue signals. Among them, as shown in the figure above is one case for each of the three types of analogue signals with noise. Fig. 1(a) for the leakage of small under the analog signal, from Fig. 1(b) can be seen, the main analog leakage frequency in 50Hz, with the set frequency; Fig. 2 for the leakage of medium degree under the analog signal, Fig. 2(b) can be seen, the main analog leakage frequency of 170Hz to 200Hz, with the set frequency; Fig. 3 for the leakage of larger analog signals, Fig. 3(b) can be seen, the leakage frequency in the 300Hz, also consistent with the set frequency.
3.2     Time domain analysis
In the signal characterization, time domain waveform feature extraction is an important way, time domain analysis can be a comprehensive evaluation of the signal vibration, fluctuations and other characteristics, and water supply pipelines in the leak, the leak produced mainly 1) leaks at the point of friction between the water and the pipe wall makes the pipe wall vibration generated by vibration signals; 2) buried pipeline leaks at the mouth of the high-pressure water flow and the very fast speed and the surrounding overburden as well as other media between the impact signal generated; 3) after the leak, the media around the buried pipeline under the impact of each medium between the collision, friction. Generated by the impact signal; 3) after the leak, buried pipelines around the medium in the high-pressure water impact of the medium between the collision, friction. But in general, no matter which situation, the collected acoustic signals show vibration characteristics.
Here we selected the time domain features: Average, variance, root mean square three features for extraction[12], as shown in Table 3, the mean value is mainly used to indicate the degree of offset of the vibration signal, the variance is used to indicate the degree of fluctuation of the vibration signal as the standard deviation Here the mean value we took the absolute value of the average value of each group to indicate, as shown in Fig. 4, the three types of signals of the mean is mainly concentrated in the range of 0~0.1; the variance is mainly concentrated in the range of 0.5~3.5; the variance is mainly concentrated in the range of 0~3.5. 0.1 range; the variance is mainly concentrated in 0.5~3.5.
[bookmark: _Ref192756236]Table 3. Characteristics of each time domain
	Time domain characteristics
	Formulas

	
Average
	

	
Variance
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[bookmark: _Ref192756468]Fig. 4. Time domain characteristics (a) Average (b) Variance
3.3     Shannon Entropy (Shannon Entropy)
Shannon entropy is proposed by Claude Shannon [13], which is used to quantify the uncertainty of the data as well as its degree of confusion, here we use this property to quantify the uncertainty of the signal as well as the degree of confusion, the higher its value, the information is very difficult to predict, the more complex, and vice versa, more regular, easier to predict, and easier to respond to the different characteristics of the signals, and the extraction of this feature has great significance for the subsequent classification of different signals by DA-RF model, as shown in Figure 9. This feature is of great significance for the subsequent classification of different signals with the DA-RF model, as shown in Fig. 5(a), in which the Shannon entropy of each type of signal does not differ much, mainly focusing on the range between 5.5 and 6.5, with individual anomalies.
3.4     Sample Entropy
Sample entropy is also an evaluation index of the complexity of the signal, similar to Shannon's entropy[14][15], the higher the value, the more complex the signal is, the more information it contains, and the worse it is for classification and prediction, and the sample entropy values of different kinds of signals are obviously different, so here we choose the sample entropy as a characteristic value of the signal in this study, which is used for the subsequent classification of signals in the DA-RF model. which is shown in Fig. 5(b).
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[bookmark: _Ref192756690]Fig. 5. Features (a) Shannon entropy (b) sample entropy
3.5     Model identification
Through the feature extraction of the signal, extracted to the mean, variance, root mean square, Shannon entropy, sample entropy, a total of 5 in the features, where each signal each feature 120 groups, a total of 360 groups of simulated signal data set, which the proportion of the training set and test set as shown in Table 4, the use of the establishment of dragonfly optimization of the Random Forest algorithm, the establishment of a simulated dataset for the identification, classification.
Table 4. Data set division
	Piping conditions
	 No. of training sets
	 No. of test sets
	Category Tags

	Small leakage
	288
	72
	  1

	 Moderate leakage
	288
	72
	  2

	Large leakage
	288
	72
	  3
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[bookmark: _Ref192757243]Fig. 6. Results (a) Train set (b) Test set
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   (a)                              (b)                                (c)
[bookmark: _Ref192757529]Fig. 7. Confusion Matrix (a) Train set (b) Test set (c) Fitness curves
The above are the recognition rate, confusion matrix, and loss curves of the model, respectively. As can be seen from Fig. 6, due to the extraction of multiple features of the signals, the model has excellent recognition effects on both the test machine and the validation set, and performs extremely well in the small leakage and the large leakage, which may be due to the significant difference in the frequency of the small leakage and the large leakage of the simulated signals, and the recognition rate of the medium leakage is not as high as the previous two, but also has excellent recognition effects. The recognition rate under medium leakage is not as high as the previous two, but also has excellent recognition effect. Secondly, we calculate the evaluation indexes of the model according to the confusion matrix in Fig. 7 (a)(b), as shown in Table 5, the best recognition is in the case of large leakage, which is the same as expected, because in the case of large leakage, the values of each feature are more easily expressed, and the recognition of class 1 and class 2 is not as good as the recognition of class 3, but both the recall rate and F1 indexes are already very high, and the overall recognition of the DA-RF model based on five classes of features is very good. Overall the DA-RF model based on 5 classes of features shows unexpected results in simulated signals. Fig. 7 (c) shows the loss curve of the model, due to the small amount of data, we set the number of iterations at 50 times to prevent the risk of overfitting caused by insufficient data and too many iterations.
[bookmark: _Ref192838357]Table 5. Individual evaluation indicators
	Model
	 Recall
	Precision
	 F1 Score
	  FNR
	  FPR
	 Category Tags

	
	1.0
	0.964
	0.981
	0
	0.022
	1

	DA-RF
	0.947
	1.0
	0.972
	0.053
	0.0
	2

	
	1.0
	1.0
	1.0
	0
	0
	3


4.     Tests and analyses
4.1      Data collection
Self-constructed DN200 foot test, the pipe will be punched 2-5mm to simulate the leakage of the pipeline, the use of carrying hydrophone snake-70s in-pipe detection equipment on the pipeline's leakage data collection of audio signals at the leakage point, as shown in Fig. 8.
[image: ]     [image: ]
       (a)                                              (b)
[bookmark: _Ref192757875]Fig. 8. (a) Footprint test site (b) snake-70s in-pipe detection equipment
4.2     Leakage signal pre-processing
Through the foot-rule test, different kinds of audio leakage signals were collected in the tube, Gaussian white noise was added to the collected signals to simulate the traffic noise that exists in the real collection situation, in which the amplitude value of the added noise was 0.02 times of the original speech noise of the Gaussian signal, and it was added to the normalised original signal to get the noise-bearing signal with the time of 2s, and the power spectrograms before and after joining are shown in Figs. 9 (a) and Fig. 10 is shown.
In order to unify the experimental conditions, the resampling rate of the original audio is set to 8000Hz, the number of sampling points is 16000, and the time is 2 s. Using the resample function in matlab well, according to the proportionality between the original and target sampling rate, the collected leaked audio signal is interpolated and extracted to achieve the conversion of the sampling rate, and at the same time to ensure that the signal's spectral characteristics are not affected. In order to reduce the influence of the boundary effect, we randomly selected a 2-second segment of the leaked audio signal as the object of processing, which also ensures the diversity of the experimental data, and in this study we use the signal-to-noise ratio (SNR) as an evaluation index after noise addition and denoising. Finally, we keep the same number of simulated signal samples as in the previous section, and among all the collected leakage data, they are divided into three types of large leakage, medium leakage, and small leakage, each with 120 groups of a total of 360 groups of 2s audio clips as the dataset of this study.
In this study we designed a 6th order Butterworth low-pass filter with a cut-off frequency of 2300 Hz to filter the noise signal in both directions to ensure that the main frequency components of the speech signal are retained while the high frequency noise is filtered out as shown in Figs. 9 (b) and 11 (a). Since the FIR filter has linear phase characteristics and can maintain the integrity of the signal waveform, we designed a 100th order FIR low-pass filter with a cut-off frequency of 2500 Hz[16], using the Hamming window function to reduce the side-valve effect, and also adopting a bidirectional filtering strategy to ensure the symmetry of the filtering effect and to improve the quality of the leaked audio as shown in Figs. 9 (b) and 11 (b). Since IIR and FIR are not well adapted to the breadth of the theory, accordingly we also introduce the LMS adaptive filtering algorithm[17], which can have better robustness under complex noise conditions, and dynamically adjust the filter weights to adapt to the audio denoising needs under different noise environments, where the step factor is set to 0.005, the filter order is 64, and through an iterative process, the input signal is utilised to match the reference signal (the FIR filtered signal) error, the weight vector is continuously updated to achieve effective noise suppression, as shown in Figs. 9 (b) and 12 (a). Finally, we also used the spectral subtraction method to process the noisy frequency signal[18], firstly, the signal is divided into frames and the Hamming window is applied to reduce the spectral leakage, the signal is transformed into the frequency domain by Fast Fourier Transform, and the noise power spectrum is estimated by the noise data of the previous frames, and according to the principle of the spectral subtraction, the power spectrum of the noise frequency signal with noise is obtained by subtracting the estimated noise power spectrum as described above from the power spectrum of the noise frequency signal, thus obtaining the power spectrum after denoising. In order to ensure the integrity of the leaked audio signal, we combine the processed amplitude spectrum with the original phase, reconstruct the time-domain signal through the inverse Fourier transform, and synthesise the final denoised speech signal using the overlapping summation method, which effectively removes the noise and retains the important features in the leaked audio signal at the same time. As shown in Figs. 9 (b) and 12 (b).
For comparison, Fig. 13 and Fig. 14 show the leakage signal as well as the time-domain plot after adding noise, and Figs. 15 to 18 show the time-domain plot after denoising the leakage signal.As can be seen from Fig. 19 the time domain graph of the original signal after adding noise is shown in Fig. 14, where the SNR value is 17.57 dB, as the study is still mainly in the signal recognition ability of the DA-RF model to do the performance test, and due to the in-tube detection compared to the traditional detection method noise is very little, the signal-to-noise ratio after adding noise here is not set very low. After the designed IIR and FIR filter, the SNR value of the signal does not increase but decreases, and the denoising effect is too poor; and after the LMS adaptive filter, the SNR value reaches 12.11, which is slightly increased but still lower than the SNR of the noisy signal, which is unfavourable to the subsequent feature extraction of the leakage signal. The denoising effect of the spectral subtraction method is beyond imagination, and its SNR value reaches 21.53dB, which is higher than that of the band-noise signal, proving that the denoising is effective, therefore, we adopt the spectral subtraction method for denoising the data in this group. It should be noted that here we do not do too much research on the differences between the various denoising methods, in the subsequent processing of the leakage signal, we take these several denoising methods for 360 groups of leakage audio processing, which denoising effect is the best, we take which denoising method, in the denoised signal for adaptive feature extraction.
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[bookmark: _Ref192758514]Fig. 9. Power spectral density (a) Before and after noise addition (b) Filter
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[bookmark: _Ref192758517]Fig. 10. Frequency domain (a) llR filter (b) FlR filter
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[bookmark: _Ref192758608]Fig. 11. Frequency domain (a) Original signal (b) Band noise signal
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Fig. 12. Frequency domain (a) LMS adaptive filter (b) Spectral subtraction
             [image: ]
[bookmark: _Ref192759564]Fig. 13. Original signal
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[bookmark: _Ref192759356]Fig. 14. Band noise signal
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[bookmark: _Ref192759606]Fig. 15. IIR filter
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Fig. 16. FIR filter
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Fig. 17. LMS adaptive filter
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Fig. 18. Spectral subtraction
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[bookmark: _Ref192759325]Fig. 19. SNR
4.3     Leakage Signal Characterisation
If the difference between the three types of signals is large, then it is easy to determine what type of signal belongs to through the pipe detection equipment, here we choose three types of signals with little difference in signal strength, so that non-professionals can hardly distinguish the difference between the three types of signals, and can also be just to verify the classification effect of the DA-RF model. We still use the same time-domain features and frequency-domain features as those described in the previous section on analogue signals. These include: mean, variance, root mean square, Shannon entropy, and sample entropy. Due to the overlap of data, in order to better see the difference, three-dimensional graphs are used here, as shown in Fig. 20 and Fig. 21.
4.4     Model Training
Here we still use the division ratio of the training set test set that is consistent with the simulated signal, and use the classification accuracy, F1 score, and other evaluation indexes of DA-RF, traditional SVM, and LSTM to make comparisons. As can be seen from Fig. 22 and Fig. 23, after the optimisation of the Dragonfly algorithm, the classification of the Random Forest algorithm has a higher degree of classification than the other two traditional models, and after feature extraction of the three leakage signals, the classification rate of the DA-RF model has reached 98.61%, with only one unclassified small leakage, which forms a cross-corroboration of the validity of the model and the method in the simulated simulation. Overall, DA-RF can still effectively classify three signals after mixing multiple signals in one piece. As shown in Table 6, the evaluation indexes of this model are also better than the other two models.
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[bookmark: _Ref192759980]Fig. 20. Time domain characteristics (a) Average (b) Variance
 [image: ]   [image: ]
(a)                                     (b)
[bookmark: _Ref192760212]Fig. 21. Features (a) Shannon entropy (b) sample entropy
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[bookmark: _Ref192760441]Fig. 22. Results (a) Train set (b) Test set
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(a)                                     (b)
[bookmark: _Ref192760457]Fig. 23.Confusion Matrix (a) Train set (b) Test set
Table 6. Individual evaluation indicators
	Model
	Recall
	F1 Score
	FNR
	FPR
	Category Tags

	DA-RF
	0.955
	0.977
	0.045
	0
	1

	
	1.0
	0.978
	0
	0.020
	2

	
	1.0
	1.0
	0
	0
	3

	LSTM
	0.84
	0.896
	0.16
	0.021
	1

	
	0.958
	0.886
	0.042
	0.104
	2

	
	0.957
	0.977
	0.043
	0
	3

	SVM
	0.72
	0.804
	0.028
	0.043
	1

	
	0.917
	0.816
	0.083
	0.167
	2

	
	0.957
	0.977
	0.043
	0
	3


5.     Conclusion
In this paper, the random forest multi-leakage classification model optimised by the dragonfly algorithm established in this paper achieves good classification effect in simulated signals, and verifies the classification accuracy of the model through the on-site foot-rule experiments, calculates the evaluation indexes, and compares the two models of SVM and LSTM. The results show that the DA-RF model has a good classification effect. The main works are as follows.
(1): A random forest multi-leakage classification model optimised by the dragonfly algorithm is established, which achieves excellent classification results in a variety of simulated leakage signals;
(2): The collected data were denoised and several denoising methods were applied, and the optimal denoising method was selected to pre-process the collected multi-leakage signals.
(3): The effect of the established DA-RF model is verified after the collected data, and the experiment shows that DA-RF can still effectively classify the three signals after mixing a piece of multiple signals. The evaluation indexes of the model are also better than the other two models.
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