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Abstract. Primary Progressive Aphasia (PPA) is a neurodegenerative
disorder characterized by a progressive decline in language abilities. It is
clinically categorized into three variants: non-fluent/agrammatic (nfvPPA),
semantic (svPPA), and logopenic (lvPPA). While functional MRI re-
mains the diagnostic gold standard, its cost and limited accessibility
hinder widespread early screening, motivating the development of alter-
native, speech-based approaches using acoustic and linguistic features.
This study presents a variant-specific classification pipeline designed
for Spanish-speaking patients, a population largely underrepresented in
prior research. 12 participants from a clinical trial dataset were selected,
each performing an structured cognitve test. The pipeline consists of
three binary classifiers—one per variant—each trained to distinguish
the corresponding PPA subtype from healthy controls. We evaluated
three representative shallow learning methods with different hyperpa-
rameter configurations, including support vector machines (SVM), Ran-
dom Forests (RF), and feedforward neural networks (FNN), all trained
using eGeMAPS acoustic features. A leave-one-speaker-out (LOSO) val-
idation strategy ensured speaker-independent evaluation.
Results show that classifiers for nfvPPA and lvPPA achieved F1-scores
between 94% and 87%, outperforming the svPPA classifier (70%). And
finally, and at global level a clinical plausibility analysis was conducted,
correborating that the model performance of the three healthy-variant
followed the expected acoustic severity gradient ( nfvPPA > lvPPA >
svPPA ) with a robust statistically significant difference of the perfor-
mance (Kruscal-Wallis+Dunn’s post-hoc tests). These findings support
the feasibility of an acoustic-based pipeline for early, variant-sensitive
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PPA screening in Spanish, contributing to the development of scalable,
clinically informed diagnostic tools.

Keywords: Intelligent Speech Analysis, Neurodegenerative disorders,
Primary Progressive Aphasia, eGeMAPS, Leave One Speaker Out

1 Introduction

Primary Progressive Aphasia (PPA) is a neurodegenerative disorder character-
ized by the progressive deterioration of language abilities, while other cognitive
domains remain relatively preserved in the early stages [8]. Clinically, PPA is
classified into three main variants: non-fluent/agrammatic (nfvPPA), semantic
(svPPA), and logopenic (lvPPA), each associated with distinct linguistic and
anatomical profiles [8, 9].

Although functional magnetic resonance imaging (fMRI) remains a widely
accepted gold standard for diagnosis due to its ability to reveal atrophy patterns
and functional connectivity disruptions [2], its high cost and limited accessibility.
Consequently, there is a growing demand for faster, cost-effective, and more
accessible diagnostic alternatives.

Several studies have explored early automated PPA diagnosis using acoustic
and linguistic features, ML, and DL techniques [15,17,21]. Most existing studies
have focused on English-speaking populations with limited datasets, often ex-
cluding widely spoken languages such as Spanish [5]. There remains a notable
gap in Intelligent Data Analysis research evaluating the clinical plausibility4 of
PPA variant classification, both from an acoustic perspective and the expected
holistic impairments across the different variants.

Two clinical trial conducted between 2022–2025 [11,22] implemented a PPA-
specific cognitive protocol including 19 tasks from validated tests (ACE-III [13],
MLSE [16], and BETA [7]). This produced a dataset of speech recordings from 20
participants (11 PPA, 9 controls), each contributing roughly one hour of audio.
For this study, we selected a balanced subset of 12 participants (2 per PPA
variant, 6 controls), ensuring comparable segment distributions.

This study addresses two main objectives: i) to propose a variant-specific clas-
sification pipeline, consisting of a set of binary machine learning models trained
on the selected 12 participants data; and ii) to conduct a global clinical plausibil-
ity analysis, evaluating whether the best-performing models for each PPA variant
align with prior expert judgments regarding expected speech impairments.

The structure of the paper is as follows: Section 2 describes the dataset,
feature extraction process, and machine learning methods used in the pipeline.
Section 3 presents and discusses the model performance results. Section 4 focuses
on the clinical plausibility analysis of the models obtained in Section 3, consid-
ering the severity impairments. Finally, Section 5 outlines the main conclusions
and future research directions.
4 Clinical plausibility refers to the extent to which a model’s outputs align with known

clinical patterns and expert expectations.
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2 Materials and methods

This section present the subdataset selected from a global PPA datataset col-
lected through the clinical trials CEImPA 2022.459/2023.227 [11,22], as well as
the methods that compose the pipeline proposed to process the data and train
the clasification models.

2.1 Dataset Description

Table 1 summarizes demographic and clinical data for 20 participants recruited
from the Universitary Asturias Hospital (Spain) as part of a recent PPA-focused
clinical trials [11, 22]. The dataset includes 9 healthy controls and 21 patients
diagnosed with one of the three PPA variants: nfvPPA, svPPA, or lvPPA, ac-
cording to the specific MLSE [16] cognitve test diagnostic criteria.

Controls were all male and exhibited high MLSE-GLOBAL (MLSEG) scores
(mean = 97.9), while patient groups showed more variability in age, gender,
education, and cognitive reserve. In particular, patients tended to be older and
included more female participants. As expected, MLSE-GLOBAL scores were
lower among patients (mean = 83.1), aligning with clinical severity.

ID Hospital Age Gender HandD ScholarS CognitiveR MLSEG MLSED

control1-control9 HUCA 66.6 9×Male Right 12.4 10.9 97.9 Healthy
pac1-pac11 HUCA 74.7 10×Male,

1×Female
Right 11.2 11.6 83.1 3×lvPPA,

3×nfvPPA,
5×svPPA

Table 1: Dataset of controls and PPA patients with average demographic and
cognitive variables.

The voice recordings of the 20 participants were collected as part of a cog-
nitive assessment protocol conducted under the approved clinical trial CEImPA
2022.459 [11]. Each recording session lasted between 30 to 45 minutes and focused
exclusively on 19 structured cognitive speech tasks derived from a curated sub-
set of ACE-III, MLSE, BETA, and FREE test batteries. These tasks specifically
involved overt voice production and targeted key cognitive-linguistic domains
such as naming, fluency, reading, spontaneous speech, and repetition.

Although the combined cognitive battery includes a broader range of tasks,
only those requiring spoken responses were selected for this study. Tasks without
voice production (e.g., visuospatial or written components) were excluded to
ensure uniformity in audio-based cognitive assessment.

For the sake of simplicity, the present study treats all recordings as belonging
to a single, generic cognitive task. Task-specific analyses will be addressed in
future work.

All recordings were conducted using a Yotto YDM-20 USB microphone con-
nected to a MacBook Pro, captured in mono at a sampling rate of 44.1 kHz.
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2.2 Methods

A typical pipeline of intelligent audio aNalysis has been used, composed of the
following steps:

Data Preprocessing: denoising and audio segmentation Each raw au-
dio file—containing the full interview with both interviewer and participant
speech—was manually timestamped and labeled to extract only the participant’s
responses for each cognitive task.

The resulting audio segments were preprocessed using all combinations of two
denoising methods and two normalization settings. For denoising, we considered
two well-established techniques: Spectral Gating and LogMMSE. In both cases,
default parameters were selected to ensure conservative noise reduction without
distorting speech. For normalization, we applied amplitude normalization tar-
geting an RMS level of –20 dBFS to improve signal comparability while avoiding
aggressive peak limiting. The “None” options preserved the raw audio signal.

Several segmentation strategies exist in the literature, including speaker-
based, silence-based, punctuation-based, fixed-window, and model-based meth-
ods [12, 19, 20, 23]. As a first approach, we adopted pause-based segmentation
using known inter-utterance pause durations in Spanish ( 700 ms) [4, 14].

Each of the six preprocessed versions of the recordings was segmented using
pydub.split_on_silence. To optimize RMS thresholds for silence detection, we
performed a grid search across seven SNR values (–15 to –50 dBFS), consider-
ing the –20 dBFS normalization target. As a fitness function, we evaluated the
number and total duration of resulting utterances. In total, 48 configurations
were tested from the cross-combination of six preprocessing pipelines and eight
threshold levels.

Feature extraction To train the models, we selected the well-established Ex-
tended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [6], consisting
of 88 acoustic functional features computed using the openSMILE toolkit. In
this context, a functional acoustic feature set refers to the extraction of 88 sum-
mary features per utterance, where each utterance constitutes one sample in the
dataset.

Participants selection and dataset partitioning Six healthy participants
(HP) and six PPA individuals, comprising two cases each of the three vari-
ants, lvPPA, nfvPPA anbd svPPA. A Leave-One-Speaker-Out (LOSO) cross-
validation strategy was applied, forming folds of four participants—three for
training and one for testing. Based on the six HP and two participants per PPA
variant, all possible 3+1 combinations were generated, yielding 60 folds per PPA
variant. The participants have been selected attending to a similar number of
samples. So, each fold constitutes a two-class problem.
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Model selection, hyperparameter optimization and feature selection
Three classical machine learning techniques have been selected belonging to three
of the most representative ML approaches, RandomForest (RF), Support Vector
Classifier (SVC), and FeedForward Neural Networks (FFNN) from the Sklearn
tool-kit. And three configurations have been selected for the execution of the
three models: i) baseline, ii) hyperparameters tuning and ii) hyperparameters
tuning with anova selection (See table 2).

Model Setup Hyperparameters

SVC
Baseline MinMax scaling; default: C = 1.0, kernel=rbf, γ = scale, max_-

iter=-1
Tuning C ∈ {0.1, 1, 10, 100}, γ ∈ {1, 0.1, 0.01, 0.001, scale}, max_iter

∈ {50, 100, 150}
Tuning + ANOVA Same as above with ANOVA feature selection (selector_k ∈

{80%, 85%, 90%, 95%} of features)

Random Forest
Baseline No scaling; default: n_estimators = 100, max_depth=None
Tuning n_estimators ∈ {50, 100, 150}, max_depth ∈ {10, 20, 30, None},

min_samples_split ∈ {2, 5, 10}, min_samples_leaf ∈ {1, 2, 4}
Tuning + ANOVA Same as above with ANOVA feature selection (selector_k ∈

{80%, 85%, 90%, 95%} of features)

FFNN
Baseline MinMax scaling; default: 1 hidden layer, 64 units, dropout=0.2,

learning_rate=1e-3, epochs=100, batch_size=32
Tuning dense_units ∈ {64, 128, 176, 256, 512}, dropout_rate

∈ {0.1, 0.2, 0.3},
learning_rate ∈ {10−2, 10−3, 10−4}

Tuning + ANOVA Same as above with ANOVA feature selection (selector_k ∈
{80%, 85%, 90%, 95%} of features)

Table 2: Hyperparameter configurations for SVC, Random Forest, and FFNN
across three experimental setups.

Evaluation Metrics All the models have been trained using accuracy as a
training metric, while the performance of each model has been shown f1-score,
accuracy, precision and recall.

3 Results and Performance Analysis

The results section is arranged in three parts: i) the results and decision about
the selection of the preprocessing and utterances split silence configuration, ii)
the selection of participants, and iii) the comparison of the performance of the
trained models.

3.1 Selection of utterances split configuration

Figure 1 contains the left) number of utterances and right) average duration of
utterances by participant obtained after the denoising, normalization and the
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utterance split processes with the different configurations. It can be stated that
the two configurations spectral_gating and logmmse with amplitude normaliza-
tion get the higher number of utterances (blue square), but the logmmse gets
a closer average duration to the real average duration in spanish of a utter-
ance, -30dBFS (blue bar = uttersplit_thres_30). So from now on the dataset
configuration used is Logmmse denoising, Amplitude normalization and Silence
threshold of -30dBFS.

Fig. 1: left) Avg. Duration of utterances by participant, right) total number of
utterances)

3.2 Selection of participants

In order to select a homogenius group of participants, we have depicted the aver-
age number of utterances per participant (see Figure 2). So, healthy participants
pac2 to pac8 have been selected (yellow), and the three pairs of ppa, pac11/pac2
(orange), pac6/pac7 (blue), and pac8/pac9 (green).

3.3 Comparison of the performace of the models

Figure 3 (left) shows the F1-score performance of the different model-configuration
combinations across 60 folds for each PPA variant. Overall, the Random Forest
(RF) approach outperforms the other models in the majority of configurations
and across all PPA variants. In addition, it is evident that the best-performing
configuration for the svPPA variant achieves clearly lower F1-scores compared
to the best results obtained for lvPPA and nfvPPA.

To statistically assess the differences between model configurations within
each PPA variant, we applied a paired t-test or Wilcoxon signed-rank test, de-
pending on the normality of the F1-score differences (verified using the Shapiro-
Wilk test). A Bonferroni correction was applied to adjust for multiple compar-
isons. Each configuration was compared against the best-performing configura-
tion for its respective variant (highlighted in bold in Figure 3 (right)).

The significance of each comparison is indicated in the figure using the fol-
lowing symbols: * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. The
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Fig. 2: Number of utterances by participant and boxplot of the durations in
second by participant

corrected p-values led to rejection of the null hypothesis in all configurations
except those based on Random Forest, across all variants. This indicates that
all FNN and SVM configurations (except for SVM with hyperparameter tuning)
are statistically significantly worse than the corresponding RF baseline.

Fig. 3: left) Boxplot with the F1 of all the configurations, right) significance study
with ttest/wilcoxon

Based on both predictive performance and statistical significance, we con-
clude that the Random Forest configurations consistently represent the best-
performing models across the three PPA variants. Since no statistically signif-
icant differences were found among the RF configurations themselves (i.e., ab-
sence of *, **, or *** in the post-hoc comparison), any of these configurations
may be selected as the final model without compromising performance (see table
3).
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Table 3: Performance metrics (accuracy, F1-score, precision, recall) of the best
Random Forest configurations for each PPA variant. CI 95%

Variant Accuracy F1-score Precision Recall

lvPPA 0.8122 ± 0.0558 0.8777 ± 0.0415 1.0000 ± 0.0000 0.8122 ± 0.0558
nfvPPA 0.8923 ± 0.0277 0.9395 ± 0.0535 1.0000 ± 0.0000 0.8923 ± 0.0277
svPPA 0.5725 ± 0.0535 0.7048 ± 0.0472 1.0000 ± 0.0000 0.5725 ± 0.0535

4 Holistic clinical plausibility analysis

We define holistic clinical plausibility as the extent to which the performance of
the trained classifiers aligns with the degree of acoustic impairment associated
with each PPA variant, considering a comprehensive assessment of speech beyond
specific cognitive tasks. This concept integrates model accuracy with the global
severity of acoustic deficits in speech production for each variant —the higher
the severity, the higher the classifier’s performance—, thus offering a clinically
grounded validation framework.

4.1 Acoustic differences between PPA and Healthy Speech

Considering only acoustic speech characteristics derived from the eGeMAPS
feature set, which includes prosodic, spectral, temporal, and voice quality trans-
forms, the degree of similarity between the three PPA variants and the healthy
speech varies drastically (see table 4).

Patients with semantic variant PPA (svPPA) typically exhibit fluent speech
with preserved articulation, prosody, and voice quality, despite deep semantic
impairments. This results in an acoustic profile that closely resembles that of
healthy speakers, particularly in prosodic and spectral domains [1].

In logopenic variant PPA (lvPPA), speech is marked by increased pausing and
hesitation due to word-finding difficulties, which introduces greater variability
in temporal and prosodic features, though articulation and voice quality remain
relatively unaffected [10,18].

In contrast, non-fluent/agrammatic variant PPA (nfvPPA) is characterized
by effortful, dysfluent speech, often accompanied by apraxia of speech and pho-
netic distortions, leading to degraded pitch contours, increased jitter and shim-
mer, and altered speech timing—all of which are directly reflected in eGeMAPS
features [3].

Based on this acoustic profile, the variants can be ordered from most to
least acoustically similar to healthy controls as: svPPA > lvPPA > nfvPPA (see
table 4). This gradient supports the clinical plausibility of our model’s ability to
distinguish PPA variants using only acoustic features.

Accordingly, we expect the binary classification performance to follow the
clinical severity of acoustic deviations: models targeting nfvPPA should yield
the highest accuracy, followed by lvPPA, while svPPA—being acoustically more
similar to healthy speech—may pose greater challenges for accurate classifica-
tion.
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Table 4: Qualitative comparison of speech similarity between PPA and healthy
speech
Variant Acoustic Characteristics Severity ML Perf.

svPPA Fluent, stable prosody, normal articulation and
voice quality

Low Low

lvPPA Some pauses, increased hesitation, but
prosody/articulation mostly intact

Moderate Medium

nfvPPA Reduced speech rate, distorted prosody, voice
harshness, apraxia effects

High High

4.2 Numerical results

In order to analize the order relation between the performance of the best mod-
els obtained for each PPA variant, we need to guarantee that the results are
comparable. So we have followed the next steps:

– Assess the normality of F1 score distributions using the Shapiro-Wilk test.
– Based on the results, select either a one-way ANOVA for normally dis-

tributed data or the Kruskal-Wallis test for non-parametric analysis.
– These tests evaluate whether statistically significant differences existed among

group means or medians. If p-value is lower to 0.05, the conclusion is that the
at least one model differs from the others in terms of the central tendency
(median)

– Finally, following a significant global result (global p-value < 0.05), we ap-
plied Dunn’s post-hoc test with Bonferroni correction to identify specific
pairwise differences while controlling for multiple comparisons (Dunn’s p-
value < 0.05).

And the final results, shows that after the normality shapiro test, the Kruskall-
Wallis was calculated sporting a p-value of 0.000 (see Table 4), that correborates
the at least one model differs from the other two respect to the median. And
finally, to check that all three models, have statistically significant difference re-
spect to the others, the Dunn’s post-hoc test with Bonferroni got the results of
table 5. It can be stated that the three algorithm performance can be compared.
So, these findings are consistent with, and further support, the severity gradi-
ent among PPA variants reported in the literature. Table 6 presents the models
ordered by F1-score. The results indicate that the performance of the variant-
specific classifiers correlates with the severity of acoustic impairment, following
a descending gradient from high to low severity.

5 Conclusion and Future Work

This work presents a ppa variant-specific classification pipeline for the detec-
tion of Primary Progressive Aphasia (PPA) variants in Spanish-speaking pa-
tients using shallow learning techniques applied to acoustic features derived from
structured cognitive tasks. RF, FFNN and SVC approaches were trained using
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Fig. 4: Global clinical plausability computed with the Kruskal-Wallis test and
the Dunn’s post-hoc test with Bonferroni correction

Table 5: Global test (Kruskal–Wallis) and pairwise post-hoc comparison (Dunn
+ Bonferroni)

lvppa nfvppa svppa

lvppa 1.000000 0.001849 0.0000002
nfvppa 0.001849 1.000000 4.25× 10−18

svppa 0.0000002 4.25× 10−18 1.000000

Global test (Kruskal–Wallis): statistic = 78.6353, p-value = 0.0000

eGeMAPS features and evaluated through a rigorous LOSO cross-validation pro-
tocol, showing that Random Forest consistently outperforms other models across
all variants.

The clinical plausibility of the best RF model was validated an acoustic
perspective, and the model performance order, aligned well with severity gradient
among the variants—nfvPPA > lvPPA > svPPA—, reinforcing the relevance of
eGeMAPS features in capturing clinically meaningful signals.

Despite promising results, this study also highlights key limitations. First,
the small sample size restricts generalizability and statistical power. Second,
the variability in utterance counts and task durations across participants may
introduce bias into performance estimates.

Future work will address these limitations by expanding the dataset to in-
clude more participants and exploring automatic speaker diarization and tran-
scription pipelines for more scalable annotation. Additionally, task-aware multi-
class classifiers will be introduced to directly model the PPA subtype in a uni-
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Table 6: Ordered list of models by F1-score for each of the PPA variant. CI 95%
Order Variant Configuration F1-score Clinical Severity impairment

1 nfvPPA RF | baseline 0.9395 ± 0.0535 High
2 lvPPA RF | baseline 0.8777 ± 0.0415 Medium
3 svPPA RF | baseline 0.7048 ± 0.0472 Low

fied architecture. We also aim to incorporate additional linguistic and syntactic
features and evaluate the potential of transformer-based acoustic encoders. Ul-
timately, this line of research contributes to the development of interpretable,
language-specific AI tools to support earlier, non-invasive diagnosis of neurode-
generative language disorders.
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