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Abstract. In the present paper the problem of designing chlorine soft sensors via 
safe switching observers for primary water distribution networks is investigated. 
A primary water distribution network benchmark is studied. First, it is modelled 
as a system of nonlinear hyperbolic partial differential equations describing fluid 
motion in the pipe network and a set of partial differential equations describing 
advection, dispersion and decay of chlorine in the pipes. The model of the net-
work incorporates water demand from users. The overall model is approximated 
as a system of nonlinear ordinary differential equation. Based on the nonlinear 
approximation of the network, linear approximants, around prespecified operat-
ing points, are produced. Based on this set of operating points a bank of switching 
linear observers is developed toward estimation of chlorine concentration at spe-
cific points of interest. The observer parameters are determined via a combined 
pole allocation and metaheuristic algorithm. The design is completed through a 
data‐driven rule‐based system, performing stepwise switching between the ob-
servers of the bank, for the operating points determined previously. The effi-
ciency of the proposed switching scheme is demonstrated through series of com-
putational experiments, where it is observed that the proposed approach performs 
satisfactorily. 

Keywords: Water Distribution Networks, Water Quality, Soft Sensor Design. 

1 Introduction 

Compared to traditional hardware sensors, which are expensive to install and maintain, 
soft sensors employ system models, AI tools and measurable variable to estimate 
unmeasured variables in real time. See [1] and [2] as well as the references therein. Soft 
Sensors  possess several advantages: reduction of infrastructure cost and provision of 
estimates physical quantities even when direct measurement is not feasible. Moreover, 
soft sensors enhance resilience in systems through continuous monitoring and fault 
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detection as well as predictive analysis, and hence are suitable for complex water 
infrastructure setups. 

Soft sensors can be an increasingly valuable tools for flow and quality variable 
estimation in Water Distribution Networks (WDNs). Of particular interest is the use 
artificial intelligence approaches for the estimation of quality and flow parameters.  
Indicatively see [3]-[8] and the references therein. In [3], an LSTM-based neural 
network soft sensor with Monte Carlo dropout for predicting flow rates in water supply 
systems has been proposed. The soft sensor has improved accuracy and reduced 
uncertainty as compared to other models. The goal of this approach was to enhance 
efficiency and cost-effectiveness by minimizing water losses through precise flow 
estimation. In [4], an ANN-based soft sensor integrated with a digital twin of a WDN 
has been introduced. The goal was to enable accurate parameter estimation across the 
network using minimal physical sensors. Trained on CFD data, the model has achieved 
accuracy and offered a cost-effective solution for real-time monitoring and proactive 
maintenance. In [5], a soft sensor for estimating flow in water supply systems, using an 
artificial neural network, has been presented. In [6], a soft sensor for chlorine-based 
water quality monitoring and using extreme learning machine techniques has been pro-
posed. The ELM-based model used in this study has proved efficiency and accuracy as 
compared to SVM approaches. In [7], an intelligent inference engine for real-time water 
quality assessment and prediction in urban water system has been proposed. This 
system used machine learning algorithms to estimate pH and dissolved oxygen. In [8], 
a dynamic, data-driven soft sensor model for real-time turbidity prediction in drinking 
water has been presented. The goal of the approach was to enhance online monitoring 
and identify key variables influencing turbidity.  

Another category of soft sensors is that based on observer design. Observer based 
approaches have been proposed to estimate mainly hudraulic characteristics of WDNs. 
Indicatively see [9] to [13] and the references therein. In [9], an online method, using a 
nonlinear state observer, has been proposed. The goal of the study is to continuously 
estimate pipe roughness in WDNs by modeling the system as a network of damped 
nonlinear oscillators. The approach relies solely on flow rate data and enables real-time 
calibration to support improved operational tasks like control and diagnostics. In [10], 
an interval-based hydraulic state estimation algorithm for leakage detection in urban 
WDNs has been proposed. The method is efficient for unstructured uncertainties in 
demand and network parameters and is demonstrated on benchmark scenarios. In [11], 
a recursive estimation algorithm for jointly estimating variables and parameters in 
drinking water distribution systems has been proposed. The estimation has focused on 
both water quantity and quality and incorporates dynamic grid design for efficient 
piecewise linearization of nonlinear models. In [12], the problem of multi-leak 
diagnosis in branched pipeline networks has been investigated, by combining k-NN 
based leak region classification with Extended Kalman Filters. The approach has been 
validated experimentally on a test bed. In [13], a leak detection and isolation method 
has been proposed for pipelines. The method fuses steady-state estimation with an 
Extended Kalman Filter, using pressure and flow data from pipeline ends.  

In the present paper, the design of chlorine soft sensors for primary WDNs, using a 
safe switching observer approach, has been proposed for the first time. The primary 
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WDN is modeled by a set of nonlinear hyperbolic partial differential equations (PDEs) 
that govern fluid dynamics within the pipe network, alongside additional PDEs 
representing the advection, dispersion, and decay of chlorine. The model also accounts 
for user water demand. To facilitate observer design, the PDE-based model is 
approximated by a nonlinear system of ordinary differential equations (ODEs). 
Linearized models are then generated around selected operating points, forming the 
basis for a bank of switching linear observers tasked with estimating chlorine 
concentration at designated locations within the network. The parameters of these 
observers are optimized using a metaheuristic algorithm. Finally, a data-driven, rule-
based switching mechanism is employed to select the appropriate observer based on the 
current operating condition. The effectiveness of the proposed observer design is 
validated through computational experiments, demonstrating its satisfactory 
performance. 

The present approach as compared to to single-step linear observers, is more 
effectivve and accurate in the sense that Single operating point observers are in general 
poor at describing dynamic behavior when the system moves away from the operating 
point and provide large estimation errors. Switching between locally valid observers 
avoids this deawback by using each observer, inside its region of validity, indicatively 
see [1] and [2]. In contrast to nonlinear observers, indicatively see [14], the switching 
approach of linear observers is less sensitive to parameter changes and noise, as well as 
more resilient towards model uncertainties. Nonlinear observers, although they are 
theoretically capable to estimate system dynamics, are subject to requiring precise 
information of the system and are prone to divergence when exposed to actual-world 
disturbances or model errors. The linear switching observer avoids these issues by 
leveraging powerful, traditional linear design techniques in each operating mode, with 
the inclusion of an analyzable switching logic. Further, comparing the present method 
with machine learning estimation methods [15]-[17], it is remarked that the method at 
hand provides interpretability, convergence guarantees, and reliability. Additionally, 
machine learning methods operate in general as black box methods and their results 
depend upon the training data set. They also typically require significant computational 
resources. In contrast, the method at hand, that belongs in the general family of artificial 
intelligence methods,  is transparent and less computationally intensive. 

2 Water Distribution Network Modeling 

2.1 Flow Rate, Pressure Head and Clorine Decay in a Closed Conduit 

Following the trend, in the literature (see [18] and the references therein), in order to 
compute the transient flow in a closed conduit, the following assumptions are made: 

a) Each pipe is straight and free of fittings or slope. 
b) The fluid exhibits slight compressibility. 
c) The duct walls are slightly flexible. 
d) Variations in convective velocity are negligible. 
e) The duct maintains a constant cross-sectional area. 
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f) The fluid density and viscosity remain constant. 

Based on the above assumptions, the transient state of the flow in a pipeline is described 
by the following set of hyperbolic partial differential equations (see [18]): 
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H z t Q z tb

t gA z

 
 

 
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where Q  denotes the volumetric flow rate in the pipeline, H is the corresponding pres-

sure head, z  is the spatial coordinate, t  denotes time, g  is the gravitational accelera-

tion, A  is the cross-sectional area of the pipe, b  is the speed of the pressure wave, D  
is the inner pipe diameter, f  is the friction coefficient and   is the relative roughness 

of the pipe. Regarding the friction factor, three types of flow can be distinguished: a) 
laminar flow, b) transient flow, and c) turbulent flow. The type of flow depends upon 

the value of the Reynolds number (Re) [19], where  Re
vD


  and where   is the 

density of the fluid, v  is the advective velocity of the fluid and    is the dynamic 

viscosity of the fluid. Note that the advective velocity of the fluid is related to the vol-
umetric flow rate as follows 

 
2

4

v D
Q


 .                                                       (3) 

Solving (3) with respect to the velocity, the Reynolds number can be expressed with 

respect to the volumetric flow rate as follows 
4

Re
Q

D


 

 . If 0 Re 2000  , then the 

fluid flow is characterized as laminar (see [20]). If 2000 Re 4000  , then the fluid 
flow is characterized as transient, while if Re 4000  the flow is characterized as tur-
bulent. If fluid flow is turbulent, which is the most common scenario for large-scale 
networks, the friction coefficient will be approximated [21] by the formula  

     4

2

2
1 10 3, , log

Re
f Q D


   


   
 

, (4) 

where j
  ( 1, ,4j   ).  

Chlorine is commonly used for water disinfection to ensure microbiological safety 
in drinking water systems. Chlorine concentration decays with time and distance due 
to reactions with pipe wall, organic matter and other materials. Proper modeling of this 
decay is crucial to maintain water quality in a drinking water system. The dynamics of 
chlorine within water conduits will be expressed through a PDE of the form (see [22]) 
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where c  denotes constituent concentration, M  is the dispersion coefficient and 1k  is 

the first order reaction rate, here considered to be constant. Considering that the flow 
in conduits is mainly affected by advection and that diffusion’s role is insignificant, the 
diffusion term in (5) can be omitted to become 
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Using (3), relation (6) takes on the form 
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. (7) 

2.2 A Benchmark Branched Water Distribution Network 

In the present section, the dynamic model of a benchmark water distribution network 
will be developed, based on the results of Subsections 2.1 and 2.2. The network (see 
Fig. 1) will be consisting of a main line with one branch, three reservoirs providing 
variable / actuatable head pressure to the network and water demand, acting as meas-
urable disturbance, to unmodelled parts of the network. The network is similar to that 
presented in [23]. 
 

 

Fig. 1. Water distribution network setup. 

Using the results of the previous subsections, the dynamics of the WDN in Figure 1 
can described by the following set of equations 

 
   2, ,

0j j

j

H z t Q z tb

t gA z

 
 

 
, (8) 

 
     

   
, ,, ,

0
2

j j jj j
j j j

j j

f Q DQ z t H z t
gA Q t Q t

t z D A

 
  

 
, (9) 



6 

 
       12

, 4 , ,
, 0j j j

j
j

c z t Q z t c z t
k c z t

t zD
 

  
 

, (10) 

where jQ , jH  and jc   ( 1,2,3j  )  are the volumetric flow rates, pressures and chlo-

rine concentrations in the respective pipes while jD  and j  denote the respective pipe 

diameters and relative roughness. For 1j   the spatial coordinate is bounded by 

 10,z L , for 2j   the spatial coordinate is bounded by  20,z L , while for 3j 

the spatial coordinate is bounded by  30,z L , where 1L , 2L  and 3L  are the lengths 

of conduits 1, 2 and 3 respectively. For the equations (8) to (10), to accurately represent 
the network presented in Fig. 1, the following boundary conditions and algebraic con-
straints are imposed 

   *
1 10,H t H t ,    *

2 2 2,H L t H t ,    *
3 3 3,H L t H t , 

        *
1 1 2 3, 0, 0, nH L t H t H t H t   , 

   *
1 10,c t c t ,    *

2 2 2,c L t c t ,    *
3 3 3,c L t c t , 

       1 1 2 3, 0, 0, dQ L t Q t Q t Q t   , 

where *
1H , *

2H  and *
3H  denote head pressures at reservoirs 1,2 and 3 respectively, *

1c , 
*
2c  and *

3c  denote chlorine concentrations at reservoirs 1,2 and 3, respectively, and 

where *
nH  denotes pressure in the junction / node. The last algebraic constraint, regard-

ing, the volumetric flow rates implies that the flow inside conduit 1 goes into the junc-
tion while the flows inside conduits 2 and 3 and the demand flow dQ  leave the junction. 

A negative value for 1Q , 2Q  or 3Q  implies reversal of the direction of the flow than 

the one presented in Fig. 1. The demand flow dQ  is considered to be greater than or 

equal to zero.  Based on the assumption of complete mixing in any negligible node 
volume, it holds that        *

1 1 2 3, 0, 0, nc L t c t c t c t   . Clearly, if the flow in a con-

duit moves toward the reservoir, then the chlorine concentration in the reservoir does 
not enter the network and the respective variable does not appear in the model. 

2.3 Approximation of the Model of a Water Distribution Network through 
Systems of ODEs 

Toward solution of the system of PDEs modelling a water distribution network, several 
approaches have been proposed. Of particular interest is the approach presented in [23], 
where a finite difference approach is used to discretize, with respect to the spatial co-
ordinate only, the PDEs in (8) to (10), thus resulting in a set of ODEs. The resulting 
formulation offers significant advantages, especially for controller design and other re-
lated applications. Let 
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where n  is the number of sections, kz  is the spatial coordinate of section k  and 

1k k kz z z    denotes the k  section length between two successive points of position 

1kz   and kz . For any particular pipe it holds that 1 0z  , 1nz L   and kz , for every 

k  not equal to 1  or 1n , denotes an interior pipe point. Using the approximations in 
(11) to (13), a finite dimensional set of ODEs of the following form is derived 
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Here, the modelling of WDNs is based on the following four assumptions:  

i. the friction coefficient follows formula (4),  
ii. the flow in the conduits is slowly varying and that the flow variables can be 

discretized in space using a single step,  
iii. the PDEs describing chlorine concentrations are divided into cln  sections, and  

iv. the flows in the conduit do not change directions. 

The fourth assumption is reasonable and common, particularly for primary WDNs, 
where the network is typically laid out to have unidirectional flow under normal oper-
ating conditions. The main role of primary WDNs is to convey large volumes of water 
from purification plants to storage reservoirs or secondary distribution networks. The 
conveyance is often accomplished through pipelines that are pressurized and sized to 
provide stable flow paths. 

Based on the above assumptions and applying a series of manipulations on (14) to 
(16), the ODE approximation of water distribution network in Figure 1, takes on the 
form 
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The constant flow direction condition implies that 
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Applying a series of manipulations, the nonlinear model of the network can be ex-
pressed in state space form as follows 
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 ,  
1

1,1
1z

A
x

g

L
 ,   2

2
2,2 x

L
z

A g
 , 

  3

3
3,3 x

L
z

A g
 ,  

2

4,4
1 1

b
z

A L
x

g
 ,   15,5 2

1 1

4 cl

D
z

n

L
x x


 . 

2.4 Linear Approximant of the Benchmark WDN 

In order to develop the linear approximant of the nonlinear model (18), the nominal 
points of all system variables are considered to be constant and satisfying steady flow 
behavior in the conduits. Let ju  ( 1, ,5j   ) be the nominal values of the inputs of 

the system and ix  ( 1, ,13i   ) be the corresponding nominal values of the state vari-

ables. Furthermore, let u  and x  be the vectors of nominal values of the inputs and the 
state variable. The operating vector of the dynamics of the system is denoted as the pair 

 ,o u x , where its elements satisfy the following equality 

  , 0x u  , (19) 

where      ,x u x B x u    . Applying a series of manipulations upon (19), it can 

be verified that 

 1
2

11 1
4 2

1

1

1
1 2

, ,L x
x

A D g

f x D
u


 ,  

 2
2

22 2
4 2

2

2

2
2 2

, ,L x
x

A D g

f x D
u


 , 

 3
2

33 3
4 2

3

3

3
3 2

, ,L x
x

A D g

f x D
u


 , 4 1 2 3u x x x   , 5 1

2
1 1 1 1

5

4

4
cl

cl

n
x

u x

D k L n x 
 , 

5
1

2
1 1 1 1

6

4

4
cl

cl

x
n x

D k L n
x

x



, 

 
2

7 5

2
1

22
1 1 1 1

16

4

cl

cl

n x

D k n
x x

L x 
 , 

   
4 3

5 1 2
32 2

1 1 1 1 2 1 2 2

8

256

4 4

cl

cl cl

x
n u x x

D k L n x D k L n x  
 , 8

2
2
2 1 2 2

9

4

4
cl

cl

x
n x

D k L n
x

x



, 

  8

2 2
2

22
2 1 2 2

10

16

4

cl

cl

n
x

x

D k L n x
x





, 

   
4 3

5 1 3
32 2

1 1 1 1 3 1 3 3

11

256

4 4

cl

cl cl

x
n u x x

D k L n x D k L n x  
 , 

1
3

2
3 1 3 3

12 1

4

4
cl

cl

x x
n x

D k L n x 
 , 

 
2

13 11

2
3

22
3 1 3 3

16

4

cl

cl

n x

D k n
x

x
x

L  
 . 
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The flow constraints in (17) are also valid for the respective flow nominal values, i.e. 
it holds that 

        1 2 3 50 0 0 0x x x u       .  (20) 

Regarding the solvability of the nonlinear system in (19), with respect to x , it suf-
fices that  

   rank , 13sJ x u  , (21) 

where    , ,sJ x u x u x   . This matrix can be expressed in terms of its elements 

as     13 13

,
,s s i j

J x u j      . Applying a series of manipulations, it can be verified 

that the nonzero elements of  ,sJ x u  are 

     
,

, ,
2 , ,

2
j

j jj
s j j j j

j j
x

j j
j

f Dx
f x D x

A D


 





    
 




  ; 1,2,3j  , 

  1

1
1,4sj

A g

L
  ,   2

2
2,4sj

A g

L
 ,   3

3
3,4sj

A g

L
 , 

     4,1 4,2 4,3

2

1 1
s s sj j

L
j

b

A g
     ,     5 5

2,1
1 1

5

4 cl
sj

un x

D L


 ,   1
1 2

1 1
5,5

4 cl
sj

n x
k

D L
  , 

   5 6

2,1
1 1

6

4 cl
sj

xn x

D L


 ,   1

1
6,5 2

1

4 cl
sj

n x

D L
 ,   1

1 2
1 1

6,6

4 cl
sj

n x
k

D L
  , 

   6 7

2,1
1 1

7

4 cl
sj

xn x

D L


 ,   1

1
7,6 2

1

4 cl
sj

n x

D L
 ,   1

1 2
1 1

7,7

4 cl
sj

n x
k

D L
  , 

   7 8

2,2
2 2

8

4 cl
sj

xn x

D L 


 ,   2

2
8,7 2

2

4 cl
sj

n x

D L 
 ,   2

1 2
2 2

8,8

4 cl
sj

n x
k

D L 
  , 

   8 9

2,2
2 2

9

4 cl
sj

xn x

D L 


 ,   2

2
9,8 2

2

4 cl
sj

n x

D L 
 ,   2

1 2
2 2

9,9

4 cl
sj

n x
k

D L 
  , 

   9 10

210
2

,2
2

4 cl
sj

xn x

D L 


 ,   2
2
2 2

10,9

4 cl
sj

n x

D L 
 ,   110,1

2
0 2

2 2

4
s

clj
n x

k
D L 

  , 

   7 11

211
3

,3
3

4 cl
sj

xn x

D L 


 ,   3
2
3 3

11,7

4 cl
sj

n x

D L 
 ,   111,1

3
1 2

3 3

4
s

clj
n x

k
D L 

  , 

   11 1

212

2

3 3
,3

4 cl
sj

n x x

D L 


 ,   3
2
3 3

12,11

4 cl
sj

n x

D L 
 ,   112,1

3
2 2

3 3

4
s

clj
n x

k
D L 

  , 

   12 1

213

3

3 3
,3

4 cl
sj

n x x

D L 


 ,   3
2
3 3

13,12

4 cl
sj

n x

D L 
 ,   113,1

3
3 2

3 3

4
s

clj
n x

k
D L 

  . 
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Applying a series of computations, it can be verified that the condition in (21) is satis-
fied if and only if the following conditions hold true: 

i. 
2

4 l

j j j

c
j

D k L
x

n


   ( 1,2,3j  ), 

ii.            2,2 3,3 1,1 3 1
32

2
1 1 2 1

,3 ,1 2,
31

2
1

0
1

s s s s s s

AA
j

A L L A L
j j j j

L
j

L
   . 

Obviously, the first condition is true, as the nominal values of the flow rates are con-
strained by (21) and all physical parameters of the model are positive. Regarding the 
second condition, it is observed that in the present case, namely the case of turbulent 
flow, the parameters   ,s j j

j ( 1,2,3j  ) are negative and hence the condition holds true. 

The linear approximant of (18) is evaluated to be of the form 

      ,s

d
x J x u x Z x u t

dt
    , (22) 

where x  is the response of the above linear system for u u u u     , that approx-

imates x x x    around the operating point  ,o u x . Since the nonlinear system 

in (19) has been proven to be solvable with respect to x , there exist a nonlinear vector 
function, mapping the nominal values of the inputs and the nominal values of the states, 
i.e.,  x u . Hence, the linear approximant system matrices in (22) can be rewritten 

as  

    ,sA u J u u ,     B u Z u . 

It is observed that A  is in lower block triangular form and only the first five rows 
of B are different than zero, i.e.,  

    
   

1,1 4 9

2,1 2,2

0A u
A u

A u A u
 

  
 

,     
  ,

1,2,3,4,5

8 5

diag

0

i i
i

b u
B u 



 
 
  

, (23) 

where   4 4
1,1A u  ,   9 4

2,1A u  and   9 9
2,2A u  .  

3 A Luenberger type Full order Observer for the WDN 

Due to technical and economic constraint, it is extremely difficult or even impossible 
to measure, in real time, all variables of the dynamics of a WDN. Although the volu-
metric flow rates in various sections, the pressure, and the chlorine concentration in 
various points of interest, are important for monitoring satisfaction of regulations, only 
a limited number of sensors can be installed to the system. Flow rate and pressure are 
typically monitored only at main junctions or boundary points. Chlorine concentration 
is even harder to measure, in real time. Although it can be measured at some of the 
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monitoring stations, it cannot be measured directly within the conduits themselves. This 
is due to the intrusive character of chemical sensing and the difficulties in installing 
effective in-line chlorine sensors that can withstand the operating conditions inside the 
pipes.  

To face the problem of sensing chlorine, a Luenberger type full order observer of the 
linear approximant in Subsection 2.4, will be designed. A common case, also adopted 
here, is the case where the only real time measurable variables are the volumetric flow 
rate in some conduits and the chlorine concentrations in reservoirs. Here, the volumetric 
flow rates are measured in conduits 2 and 3. Also, the chlorine concentrations are meas-
ured at the entrance of reservoirs 2 and 3. Hence, the measurable output vector is the 
following 

 m my C x , (24) 

where   4 13

,m m i j
C c      . The non-zero elements of mC  are    1,3 2,4m mc c 

   3,10 4,13
1m mc c  . From (22) and (24) it is observed that m my C x  , where my  

is the response of the measurable outputs of the system for u u u u     . This re-

sponse approximates m m my y y    around the operating point  ,o u x . Using (22) 

and (24) and applying a series of manipulations, it can be verified that the system is 
observable, independently of the nominal values of the inputs and the state variables. 
Hence, the observer poles can arbitrarily be selected to satisfy specific design criteria. 
The observer is selected to be of the following full order Luenberger form using the 
variations of the inputs and the measurement outputs of the nonlinear system, see [1] 
and [2],  

                 0ˆ ˆ ˆ ˆ: , 0m

d
x t F u x t G u y t M u u t x x

dt
           , (25) 

where   13 13F u  ,   13 4G u   and   13 5M u   are appropriate observer matri-

ces to be selected by the designer. Here, the goal of the observer is to compute a vector 
 x̂ t  that will estimate x , in an appropriate region of u .  It is important to men-

tion that the system matrices of the observer are function matrices of the operating 
points. Similarly to [1] and [2], the matrices F  and M  are selected to be 

       mF u A u G u C  , (26) 

    M u B u . (27) 

The elements of G  are to be selected by the designer such that the eigenvalues of F  
are appropriately adjusted. Regarding selection of the elements of G , applying series 
of computations upon the system matrices in (25) it can readily be observed that the 
characteristic polynomial of the linear approximant can be written as a product of two 
polynomials in the form 
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      f cp s p s p s , (28) 

where  fp s  is a fourth order polynomial, depending upon the parameters of the fluid 

dynamics, and  cp s  is a ninth order polynomial, depending upon the chlorine con-

centration parameters. For the observer to have the polynomial factorial form (28) as 
well as to facilitate the selection of the parameters of the matrix G , the observer matrix 
is selected to be of the following block diagonal form 

    
 

1,1 4 2

9 2 2,2

0

0

G u
G u

G u




 
  
 

,  (29) 

where     4 2
1,1 1,1 ,i j

G u g       and     9 2
2,2 2,2 ,i j

G u g      . Also, upon ex-

pressing the measurable output matrix mC  in the following block diagonal form  

 ,1 2 9

2 4 ,2

0

0
m

m
m

C
C

C




 
  
 

, (30) 

the observer characteristic polynomial is factored as follows 

         13 , ,deto o f o cp s sI F u p s p s   , (31) 

where 

       , 4 1,1 1,1 ,1deto f mp s sI A u G u C   , (32) 

       , 4 2,2 2,2 ,2deto c mp s sI A u G u C   . (33) 

Let ,f j  ( 1, , 4j   ) are the roots of  fp s  and ,c i  ( 1, ,9i   ) are the roots of 

 cp s . Without loss of generality, assume that    , , 1Re Ref j f j    ( 1, 2,3j  )  

and that    , , 1Re Rec i c i    ( 1, ,8i   ).  

In what follows, the observer polynomial roots are restricted to satisfy the following 
constraints: 

 The roots of  ,o fp s  and  ,o cp s  are real and negative, i.e., 

   4

, ,1
( )o f f jj

p s s 
   and    9

, ,1
( )o c c ii

p s s 
  , where 

,( ) 0f j   ( 1, , 4j   ) and ,( ) 0c i   ( 1, ,9i   ). 

 The roots of  ,o fp s  and  ,o cp s  are ordered and have a minimum distance 

between them being equal to   i.e. it holds that , 1 ,( ) ( )f j f j                     

( 1, 2,3j  ) and  , 1 ,( ) ( )c i c i      . 
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 Regional per pole stability is achieved, i.e. it holds that 

   , ,Ref f jj    and    , ,Rec c ii    where  0  . 

The parameters   and   are to be selected by the observer designer. It can readily be 

observed that the observer pole placement problem has multiple solutions. In what fol-
lows, the pole placement problem will be solved using the observer degrees of freedom 
appearing in the first columns of  1,1G u  and  2,2G u . Clearly, the solution will be a 

function of the remaining degrees of freedom. These degrees of freedom as well as the 
values of the poles can be determined so that other design requirements are achieved. 

 It is important to mention that the above observer design procedure implies that: 

i. the linear approximant in (22) is fully known, a priori or through an identifi-
cation / parameter determination procedure (indicative see [1] and [2]) 

ii. the output and input variables of the process are measured in real time, and 
iii. the operating trajectory of the nonlinear process is known inside an appropri-

ate operating region. 

The operating trajectory is the set of all operating points satisfying (19). The third im-
plication means that the set of all these points is known to the designer, inside a range 
of the participating variables.  

4 A Heuristic Approach toward Determination of the Observer 
Degrees of Freedom 

Toward determination of the degrees of freedom of the observer, a metaheuristic ap-
proach, having similarities to those in [24] and [25], will be used. Applying elementary 
computations, it can readily be observed that the frequency response dynamics of the 
observer in (25) is of the form 

               0
ˆ ˆmX s s G u Y s M u U s s x         , (34) 

where         1 13 13

13 ,i js sI F u s s
          is the observer resolvent matrix 

and  X̂ s ,  mY s  and  U s  denote the Laplace transforms of  x̂ t ,  my t  

and  u t , respectively. Clearly, if the observer’s degrees of freedom satisfy the con-

straints imposed in Section 3, stability is achieved, guaranteeing that the free response 
of the observer tends to zero. Define the free observer parameter vector 

         1 26 , , , ,1 91 4

T

f f c c               

       1,1 1,1 2,2 2,21,2 4,2 1,2 9,2

T

g g g g 
  . 
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The elements of   will be determined so that the influence of the free response to the 

observer response is attenuated. This attenuation will be achieved by appropriately se-
lecting   such that the following cost criterion is minimized 

    
13

,
1, ,13

10

, max i j
i

j

J u h t dt


 

    
  


, (35) 

where     ,
1

,i j i jh t s   is the  ,i j  element of the transition matrix of the ob-

server dynamics in (25) and where  1   denotes the inverse Laplace transform of 

the argument transfer function. Clearly, the optimization procedure must be executed 
separately at each operating point. 

The main idea of the algorithm is to define a search area for the observer parameters 
and after series of computations to contract to suboptimal values, satisfying the ob-
server constraints. The search area for each parameter is defined by the center value, 

let  j c
  ( 1, , 26j   ), and the respective half-width  j w

 . The optimization algo-

rithm presented in [24] and [25] is modified as follows: 

Metaheuristic Optimization Algorithm 
Initialization  

 Set search area bounds using center values and half-widths of parameters  j c
  

and  j w
  ( 1, , 26j   ). 

 Define the performance criterion in (35). 
 Set the observer pole thresholds   and  . 

 Set the optimization parameters loopn  , repn , totaln   

 Set the convergence parameter  . 
Algorithm 
S0:  Set max 0i   and minn   . 

S1:  Define the search space        j j j j jc w c w
         ( 1, , 26j   ). 

S2:  Set 1 0i  . 
S3:  Set 1 1 1i i  . 
S4:  Set 2 0i  . 
S5:  Set max max 1i i  . If max totali n  go to S15. 
S6:  Set 2 2 1i i  . 

S7:  Randomly choose a vector of parameters    
2 2 2

1 26

T

i i i
      within the 

search space and let  
2

j j i
  . 

S8:  Check if the constraints presented in Section 3 are satisfied. If they are not satis-
fied, go to S7. 

S9:  Determine  
2

,iJ J u  



16 

S10: If 2 loopi n , then go to S5. 

S11: Find  
1 2,min 2min , 1, ,i i loopJ J i n    and the corresponding observer parameters  

 
1

j i
  ( 1, , 26j   ). 

S12: If 1 repi n   then determine the observer parameters,   
minj  and  

maxj  corre-

sponding to  
1min ,min 1min , 1, ,i repJ J i n    and maxJ 

,min 1max{ , 1, , }
ii repJ i n  ,  respectively. Else go to S3 

S13: If min minJ n , set minminn J ,    
minj jc

   and      
min minj j jw

             

( 1, , 26j   ). 

S14: If     
1, ,26
min /j jw cj

  





 go to S1. 

S15: Set  
minj j   ( 1, , 26j   ). 

5 Determination of the Observer Operating Areas and 
Switching Mechanism 

5.1 Target Operating Areas 

It is important to mention once more that the metaheuristic algorithm, presented in Sec-
tion 4, produces observer parameters corresponding to a given operating point. The next 
step is to determine the operating area of the derived observer derived, namely the area 
where the observer behaves satisfactorily. To do so, define the following five-dimen-
sional spheroid  

 

2
5

2

1

j j

j j

u u
R

u

 
  

 



, (36) 

where ju  denotes the steady state value of ju  ( 1, ,5j   )  during a step wise transi-

tion, ju  denotes, as already mentioned, the nominal values of the input corresponding 

to an observer of the form in (24), defining the respective coordinate (in the five dimen-
sional space) of the center of the spheroid and R  denotes the radius of the spheroid. 
Let ix  ( 1, ,13i   )  denote  the steady state value of the state variable ix  correspond-

ing to ju ( 1, ,5j   ). Let u  and x  be the steady state input and state variable vectors 

corresponding to the above transition.  Note that ix  and ju  can be determined follow-

ing a similar procedure to that presented in Subsection 2.5 for the determination of the 
operating point. Finally, let ex  be the estimation of x  derived through the observer in 

(25), where 

         1

e mx x F u G u C x x M u u u
         . (37) 
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Define the augmented vectors 
TT Tx u    

   , 
TT Tx u      and 

TT T
e ex u    
    as well as the normalization matrix 

 
 

 

1
13 5

1
5 13

diag 0

0 diag

j

i

x
W

u







 
 
 
 

. (38) 

Based on the above definition, consider the following normalized estimation steady 
state error metric: 

 
   
   

100%

T

e e

ss T

W x x W x x

W x x W x x


        
       

   

 
 (39) 

The target area for the operating point  ,o u x  is defined as the maximum radius 

of the spheroid in (36), such that all input transitions from the operating point to a new 
steady state value inside the spheroid, result in  ,maxss ss  , where ,maxss  is a positive 

parameters selected by the observer designer. Note that the transitions do not neces-
sarily start from the operating point, since the steady state value of the state variables 
depends only on the steady state value of the input and not the initial point. Clearly, this 
procedure must be repeated for a sufficiently large number of points to ensure that the 
desired area is covered by target operating regions that satisfy the dense web principle. 
Following a similar procedure to that in [1], the idea lies first in generating a uniform 
grid or nominal values of the inputs and next, in determining, for each set of inputs, the 
corresponding observer and after checking if the dense web principle [1] is satisfied. If 
it is satisfied, then superfluous points are eliminated. If it is not satisfied, the areas that 
remain uncovered are determined and additional points in the middle of the uncovered 
areas are selected. 

5.2 Switching Between Observers 

As already mentioned, the observer matrices depend upon the operating point of the 
system belonging to a prespecified set of operating points of the system. Let  O  be the 
set of nominal operating points, as described in the previous subsection, satisfying the 
dense web principle. Around each nominal operating point, the nonlinear system is ap-
proximated by a respective linear approximant, while the respective observer matrices 
can be evaluated as described in Sections 3 and 4. These observers constitute a, so-
called, bank of observers. Assume that the bank of observers includes the observers 

1,...,    . For proper operation it is evident that a switching mechanism that appro-

priately enables the operation of appropriately chosen observer of the bank is necessary. 
Considering that the performance outputs of the system are measurable in real time and 
that the trajectory of the nonlinear process is known, an approach based upon the con-
vergence of the measurable variable of the system to their target values is proposed. 
Define the time dependent convergence metric 
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  
     
   

100%

T

m m m m

c T

m m

y t C x y t C x
t

C x x C x x


 
 

       

 

 
. (40) 

Here, during each transition, switching between observers will take place whenever the 
convergence metric reaches a threshold s

 , i.e. when  c st  . 

6 Simulation Results 

In order to demonstrate the performance of the proposed switching observer scheme, 

let 2
1 0.0079 mA     , 2

2 0.0079 mA     , 2
3 0.0028 mA     ,  1 62 mL  , 

 2 124 mL  ,  3 80 mL  ,  1 0.1 mD  ,  2 0.1 mD  ,  3 0.06 mD  , 

 1 0.0035   ,  2 0.0035   ,  3 0.0058   , 2m/sg     , 3Kg/m     , 

 0.0011 Pa s  ,  3cln    , -1
1 0.1 hk     ,  1200 m/sb  ,  1 0.308642   , 

 2 6.9   ,  3 3.7    and  4 1.11   . Consider the uniform grid of nominal val-

ues of the inputs presented in Table 1. 

Table 1. Operating point trajectory 

#  1 mu   2 mu   3 mu   4 l/minu   5 mg/lu  

1 20.0000 17.0000 14.0000 360.0000 2.0000 
2 20.5263 16.8947 14.1053 356.8421 1.9737 
3 21.0526 16.7895 14.2105 353.6842 1.9474 
4 21.5789 16.6842 14.3158 350.5263 1.9211 
5 22.1053 16.5789 14.4211 347.3684 1.8947 
6 22.6316 16.4737 14.5263 344.2105 1.8684 
7 23.1579 16.3684 14.6316 341.0526 1.8421 
8 23.6842 16.2632 14.7368 337.8947 1.8158 
9 24.2105 16.1579 14.8421 334.7368 1.7895 
10 24.7368 16.0526 14.9474 331.5789 1.7632 
11 25.2632 15.9474 15.0526 328.4211 1.7368 
12 25.7895 15.8421 15.1579 325.2632 1.7105 
13 26.3158 15.7368 15.2632 322.1053 1.6842 
14 26.8421 15.6316 15.3684 318.9474 1.6579 
15 27.3684 15.5263 15.4737 315.7895 1.6316 
16 27.8947 15.4211 15.5789 312.6316 1.6053 
17 28.4211 15.3158 15.6842 309.4737 1.5789 
18 28.9474 15.2105 15.7895 306.3158 1.5526 
19 29.4737 15.1053 15.8947 303.1579 1.5263 
20 30.0000 15.0000 16.0000 300.0000 1.5000 

 
Using the above sets of nominal values of the inputs as well as the results of Sub-

section 2.5, the respective steady state values for the state variables may be determined. 
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To determine the observer matrices corresponding to the above operating conditions, 
the analytic / metaheuristic approach presented in Sections 3 and 4 will be used. In 
particular, for all operating points let  0.01  , 1.1  , 0.01  , 1000loopn  , 

30repn  , 810totaln   and  

   ,

5
Re

2j f jc

 
   and    ,

3 5
Re

2j f jw

 
  for 1, , 4j   , 

   ,

5
Re

2j c ic

 
   and    ,

3 5
Re

2j c iw

 
  for 5, ,13j   , 

  0j c
   and   50j w

   for 14, , 26j   . 

Using the above parameters in conjunction to the metaheuristic algorithm in Section 
4, the observer matrix degrees of freedom, per operating point, are determined. Based 
on these results and applying series of computations, the operating area per nominal 
value set may be derived. Setting ,max 5%ss  , the five-dimensional spheroid radii pre-

sented in Table 2 are derived. 

Table 2. Spheroid Radii per Operating Point 

# R # R
1 0.0603 11 0.2184 
2 0.0833 12 0.2065 
3 0.1043 13 0.1837 
4 0.1292 14 0.2080 
5 0.1466 15 0.2121 
6 0.1696 16 0.2169 
7 0.1828 17 0.2191 
8 0.1789 18 0.2209 
9 0.1838 19 0.2493 
10 0.2452 20 0.2541 

 
One can easily observe from the data presented in Table 2, an increasing trend for the 
radius. Although there exists an anomaly in the intermediate portion, as will be shown 
later, it does not impact the performance of the switching scheme significantly and is 
most likely due to the metaheuristic algorithm having converged to a local minimum 
for the particular operating points. 

An additional observation that can be made is that the target areas are overlapping 
and consequently, to implement an observer switching scheme as described previously, 
not all points need to be used. Applying series of computations, it can be observed that 
it suffices to use operating points 1, 8 and 16, covering the entire desired region. Indic-
atively, in Figures 2 to 11 the projection of the 5-dimensional region (per operating 
point) to 2-dimensional surfaces are presented, demonstrating overlapping areas where 
switching between observers may take place. The ten plots provide a distinct image of 
the way in which five-dimensional coordinates, as defined by the variables 1u  to 5u , 
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pattern when plotted in two-dimensional planes. Every one of the ten plots shows three 
color-coded domains for operating points 1, 8 and 16 (1 – cyan, 8 – green, 16-red) 
associated with the respective accuracy regions. Amongst the projections, in the 1 2u u  

plane clusters are clearly aligned along the 1u  axis with increasingly widening spread 

from cyan to red indicating separation and structure. Other projections based on 1u , 

also indicate the gradient structure, but with growing amounts of overlap. Projections 
based on 2u  to 5u  indicate higher overlap and less separation. 

 
Fig. 2. Projection on the 1 2u u  plane. 

 
Fig. 3. Projection on the 1 3u u  plane. 

 
Fig. 4. Projection on the 1 4u u  plane. 

 
Fig. 5. Projection on the 1 5u u  plane. 
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Fig. 6. Projection on the 2 3u u  plane. 

 
Fig. 7. Projection on the 2 4u u  plane. 

 
Fig. 8. Projection on the 2 5u u  plane. 

 
Fig. 9. Projection on the 3 4u u  plane. 

 
Fig. 10. Projection on the 3 5u u  plane. 

 
Fig. 11. Projection on the 4 5u u  plane. 

 In order to demonstrate the performance of the switching observer consider the fol-
lowing transitions: 

 Initial Point:  1 19.7556 mu  ,  2 17.0289 mu  ,  3 14.0429 mu  , 

 4 360 l/minu  ,  5 2.0039 mg/ltu   
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 Transition Point 1:  1 20.7163 mu  ,  2 16.7226 mu  ,  3 14.0429 mu  , 

 4 354 l/minu  ,  5 1.9697 mg/ltu   

 Transition Point 2:  1 24.7883 mu  ,  2 15.8112 mu  ,  3 14.9878 mu  , 

 4 324 l/minu  ,  5 1.7221 mg/ltu   

 Target Point:  1 27.8408 mu  ,  2 15.4377 mu  ,  3 15.7097 mu  , 

 4 312 l/minu  ,  5 1.5826 mg/ltu   

Note that transitions 1u  to 4u  from point to point will be assumed to take place 

smoothly and not in step form. This is a common approach in closed conduits and water 
distribution networks to prevent water hammer effects, which can potentially damage 
infrastructure. In Figures 12 to 24, the response of the nonlinear model in (18) in con-
junction to the response of the switching observer, for all state variables, is presented. 
Overall, the observer is highly accurate with negligible deviations that are visible in 
only a few instances. Regarding the non-measurable variables, in Figure 12, the volu-
metric flow rate through conduit 1 is presented and shows a nearly ideal match between 
the system response and the observer estimate. The estimation curve closely tracks the 
system curve, both in steady-state operation as well as under sudden changes when 
switching takes place. This shows that the observer is well-tuned for this conduit's dy-
namics, providing fast convergence and zero steady-state error. In Figure 15, the pres-
sure head at the point of conduit junction is presented. The head pressure estimation is 
very close to tracing the system response. However, there is a temporary mismatch 
during the step changes, where estimation is slightly behind the system response. How-
ever, the estimation approaches the correct value, demonstrating that the observer is 
still reasonably accurate. The estimation of chlorine concentrations (see Figures 16, 17, 
19, 20, 22 and 23) show that the observer performs satisfactorily for all parts of the 
conduits being observed. The estimated concentrations follow the actual system re-
sponses accurately, following their steady-state levels and their dynamic transitions, 
with high accuracy. Minor deviations are observed in the steeply sloping (observer 
switch points) (e.g., Figure 18) that are caused by the observer's slower convergence in 
these regions. Regarding estimation of the measurable variables, they are practically 
identical to the respective measurements.  

 
Fig. 12. Estimation of 1x  vs model response. 

 
Fig. 13. Estimation of 2x  vs model response. 
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Fig. 14. Estimation of 3x  vs model response. 

 

Fig. 15. Estimation of 4x  vs model response. 

 

Fig. 16. Estimation of 5x  vs model response. 

 

Fig. 17. Estimation of 6x  vs model response. 

 

Fig. 18. Estimation of 7x  vs model response. 

 

Fig. 19. Estimation of 8x  vs model response. 
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Fig. 20. Estimation of 9x  vs model response. 

 
Fig. 21. Estimation of 10x  vs model response. 

 
Fig. 22. Estimation of 11x  vs model response. 

 
Fig. 23. Estimation of 12x  vs model response. 

 
Fig. 24. Estimation of 13x  vs model response. 

7 Conclusions 

In the present paper, a novel design approach for chlorine soft sensors in primary 
WDNs, employing a bank of linear safe switching observers has been presented. The 
method has employed a nonlinear dynamic approximation of the PDE-based fluid and 
chlorine transport dynamics and a linear approximant of the nonlinear approximation 
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about selected operating points. The observer parameters have been optimized with a 
metaheuristic algorithm. Finally, a rule-based data-driven switching has been adopted 
to switch observers in real time. Computational experiments showed that the proposed 
method provides reliable and accurate chlorine concentration estimates under various 
operating conditions.  

Future research will focus on enhancing the observer's resilience. Toward this goal, 
adaptive learning mechanisms and machine learning techniques to adjust observer 
parameters, in response to model uncertainties and unmodeled dynamics, will be 
developed. Finally, experimental validation will be performed to evaluate the 
operational feasibility and scalability of the suggested solution within actual water 
networks. 
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