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Abstract. The rapid advancement of industry 4.0 technologies has catalyzed the 

integration of smart digital twins into technical safety assessment and asset in-

tegrity assurance processes. These intelligent systems, powered by machine 

learning, IoT, and real-time analytics, offer unparalleled potential to enhance 

decision-making and reduce human cognitive fatigue. This paper presents a 

framework for categorizing the degree of autonomation in smart digital twins, 

focusing on their role in mitigating human error and optimizing technical and 

operational safety. We define autonomation as the interplay between automa-

tion and human oversight, and we classify its levels based on task complexity, 

decision-making capabilities, and human intervention requirements. Case stud-

ies in industrial sectors, such as oil and gas, demonstrate the efficacy of the 

proposed framework. The findings highlight that appropriately calibrated levels 

of automation enhance the accuracy of safety assessments and promote perfor-

mance target traceability and sustainable asset management by minimizing op-

erator workload and improving cognitive resilience. This research provides a 

pathway for implementing smart digital twins to achieve safer, more efficient, 

and resilient industrial systems. 

Keywords: smart digital twin, technical safety and risk assessment, industry 

4.0, human cognitive fatigue 

1 Introduction 

Industry 4.0 has introduced transformative technologies such as the Internet of Things 

(IoT), artificial intelligence (AI), and advanced data analytics, driving innovation 

across industrial sectors [1, 2]. Among these advancements, Smart Digital Twin 

(SDT) have emerged as pivotal tools for technical safety assessment and asset integri-

ty assurance [3]. By creating real-time, data-driven virtual replicas of physical sys-

tems, SDT enables predictive maintenance, risk mitigation, and process optimization 

with unprecedented precision [4, 5]. These capabilities are particularly critical in in-

dustries such as oil and gas, where safety and reliability are paramount. 
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The oil and gas industry operates in a complex, high-risk environment where tech-

nical safety and asset integrity are critical to both operational efficiency and work-

force safety [6]. Equipment failures, unplanned downtime, and safety incidents can 

lead to severe consequences, including environmental harm, significant financial loss-

es, and even loss of life [7]. While effective, traditional asset management and safety 

assurance practices often involve considerable human oversight; operators must pro-

cess large volumes of complex data and make rapid, high-stakes decisions [8, 9]. This 

manual approach heightens the risk of human error and contributes to cognitive fa-

tigue, especially in roles that demand constant vigilance and quick response to dy-

namic conditions. 

Digital twin digitally represents physical assets, systems, or processes, mirroring 

their real-time status through continuous data integration [10]. These virtual models 

enable operators and engineers to monitor asset health, predict failures, and identify 

potential safety risks before they escalate, facilitating a proactive approach to asset 

management [11, 12]. By offering real-time insights and automating routine monitor-

ing and analysis tasks, digital twins significantly reduce the cognitive load on human 

operators, allowing them to focus on critical decision-making with enhanced clarity. 

Despite their potential, implementing SDT involves addressing key challenges, 

particularly balancing automation with human oversight [13]. The concept of "auton-

omation," which describes the interplay between automated systems and human con-

trol, plays a crucial role in this context [14]. While higher degrees of automation can 

reduce human error and enhance efficiency, they may also lead to cognitive fatigue 

when operators are required to manage complex, high-stakes decisions without suffi-

cient support [13]. Conversely, under-automation can burden human operators with 

repetitive tasks, increasing the likelihood of errors and inefficiencies. 

This paper proposes a framework for categorizing the degree of autonomation in 

SDT tailored to reduce human cognitive fatigue while optimizing technical safety and 

asset integrity. By systematically classifying automation levels based on task com-

plexity, decision-making capabilities, and human intervention requirements, the 

framework addresses the dual objectives of enhancing operational safety and sustain-

ing human cognitive resilience. Through the classification and categorization of DT 

autonomation, stakeholders in the oil and gas industry can assess their current capabil-

ities and roadmap for advancing the autonomy of their digital twins in creating safer, 

more efficient, and resilient industrial operations. 

2 Background and Literature Review 

2.1 Smart Digital Twin (SDT) 

SDTs are virtual representations of physical systems that mirror their behavior in real-

time or near real-time [15]. With the advent of the Internet of Things (IoT), machine 

learning, and cloud computing, digital twins have been extensively used across manu-

facturing, healthcare, and infrastructure management [16]. SDTs incorporate uncer-

tainties into these models, enabling risk assessment and safety analysis. Despite the 
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level of research achieved so far, these integrated models have yet to achieve the level 

of implementation described in the research. 

 The concept of SDT for risk assessment has gained significant attention in various 

industries. [17] focused on probabilistic methods for risk assessment of airframe digi-

tal twin structures, highlighting the importance of incorporating uncertainty in the 

assessment process. [18] extended this concept to transmission pipelines, emphasizing 

the need for SDT to assess risks effectively. [8] discussed the development of a digital 

twin reference model to prevent operators' risks in process plants. This work proposed 

a reference model for digital twins in process plants to enhance risk control and pre-

vention, emphasizing the potential benefits for operator safety, cost reduction, and 

overall business improvement in the context of offshore oil and gas platforms. Simi-

larly, [19] proposed a quantitative risk assessment method for cyber-physical systems 

using probabilistic and deterministic techniques to identify critical assets that require 

cybersecurity measures. The advancement in the use of automated DT for risk as-

sessment poses a new cybersecurity threat to prevent malicious intrusions into the 

model. 

 Grimmeisen [20] introduced a method for generating hybrid probabilistic risk 

models from SysML v2 models of software-defined manufacturing systems. This 

approach aimed to automate the generation of reliability models from digital twin 

formalism, enhancing the efficiency of risk assessment processes. [21] proposed a 

public opinion digital twin for public opinion analysis, demonstrating the versatility 

of digital twin concepts in various domains. Furthermore, Liao [22] presented the 

Airframe Digital Twin (ADT) framework for aircraft structural life-cycle manage-

ment, focusing on reducing maintenance costs and extending the useful life of aircraft 

components. [23] discussed the SCO-FloodDAM-DT project, which aimed to develop 

a digital twin for flood detection, prediction, and risk assessments on a global scale, 

highlighting the importance of digital twins in environmental monitoring and disaster 

management. The application of SDT to different industries and equipment manufac-

turers could enhance its integration in different applications. 

[24] highlighted the importance of transitioning to a digital work environment to 

improve data analytics and enhance risk assessment and management practices. [25] 

discussed how digital twins can enhance operational integrity management by accu-

rately estimating maintenance scopes and repairs, ultimately improving asset perfor-

mance and reliability. [26] proposed a digital twin approach for CO2 pipeline integri-

ty management, showcasing the potential of data-driven models to improve structural 

integrity and address integrity issues in pipeline transportation. In the oil and gas sec-

tor, original equipment manufacturers could have a DT of their products, which can 

be monitored and managed individually or as a part of an integrated system on off-

shore platforms. 

The literature review indicates a growing interest in smart digital twins for risk as-

sessment across different industries. It emphasizes the need for advanced modeling 

techniques to enhance safety, efficiency, and decision-making processes. These stud-

ies demonstrate the potential of categorizing digital twins to improve risk assessment 

practices and address complex challenges in various domains. 
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2.2 Smart Digital Twin for Risk and Safety Assessment 

A smart digital twin extends the traditional digital twin concept by integrating sto-

chastic models to account for system dynamics, external influences, and measurement 

noise uncertainties [17]. This capability is vital for safety-critical systems in sectors 

like the aerospace, healthcare, nuclear power plants, and autonomous vehicles. 

SDTs are emerging as powerful tools for integrating risk and safety assessment in 

smart industrial environments [9]. They can autonomously identify potential risks, 

map dependencies, and generate analyses for mitigation strategies [27]. SDTs enable 

real-time monitoring of human behaviors in smart factories using wearable sensors 

and computer vision, facilitating automatic risk prediction and avoidance [28]. A 

Digital Risk Twin (DRT) concept has been proposed to digitize the RAMS process 

across the product lifecycle, offering integration, visualization, and simulation capa-

bilities [27]. However, challenges remain in addressing the safety, cybersecurity, and 

reliability aspects of DTs [9]. A reference model for implementing DTs in risk predic-

tion and prevention has been developed, consisting of four layers and five implemen-

tation phases [8]. These advancements in DT improved operator safety, reduced 

maintenance costs, and enhanced overall business in process industries. Fig. 1 shows 

the stages for achieving an SDT from a conventional digital twin model. 

 

 

Fig. 1. SDT for risk and safety assessment 

2.3 Classification of Digital Twin 

For progress tracking, a comprehensive analysis of the various roles digital twins can 

assume and the degree to which these roles can be automated in collaboration with 

humans needs to be defined [13]. However, since role allocation is closely tied to 

classifying different technological capabilities within DTs, we present a summary of 

existing approaches and frameworks in this area. [13] identifies five levels of digital 
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twins (DTs): (1) Descriptive Twin, a visual representation of the asset; (2) Informa-

tive Twin, which collects and consolidates specified data; (3) Predictive Twin, lever-

aging operational data to forecast future outcomes; (4) Comprehensive Twin, capable 

of simulating "what-if" scenarios; and (5) Autonomous Twin, which operates inde-

pendently on behalf of users. [29] offer a classification of digital twins (DTs) based 

on their levels of automation: Pre-Digital Twin, Digital Twin, Adaptive Digital Twin, 

and Intelligent Digital Twin. However, this framework does not account for DTs' 

roles. [30] categorize digital twins (DTs) into three types based on their level of data 

integration: (1) Digital Model, a digital representation of a physical object with no 

data exchange; (2) Digital Shadow, which allows one-way data flow from the physi-

cal object to the digital counterpart; and (3) Digital Twin, characterized by bidirec-

tional data exchange. This classification focuses solely on data integration capabilities 

and does not address the various roles DTs can perform or their levels of automation. 

To fully leverage the potential of digital twins (DTs), autonomation, and human 

operators, it is essential to understand the roles a DT can assume and the extent to 

which these roles can be automated. This study introduces the categorization of the 

DT framework in the oil and gas sector, combining the percentages of various roles a 

DT can perform with the corresponding levels of automation for each role. 

3 Research Methodology 

3.1 Problem identification and validation of SDT development 

Implementing SDT for risk and safety assessment with decision-making in the off-

shore oil and gas industry involves a structured qualitative methodology to ensure 

effective design, deployment, and adoption. The methodology used in this study fo-

cuses on stakeholder engagement, process analysis, and iterative development to align 

the SDT implementation with the industry's unique needs. Action research within case 

study-based research is a hands-on, iterative approach where researchers work closely 

with participants to identify problems, implement solutions, and reflect on the out-

comes — all within a specific, real-life case context. The goal is not just to understand 

a situation but to actively improve it through planning, action, observation, and reflec-

tion cycles [31]. Fig. 2 shows the action research approach used: 

 

Fig. 2. Illustration of case study research process based on [31] 
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 Using SDT for safety assessment involves creating a virtual model of a physical 

asset or system and leveraging real-time data, simulations, and predictive analytics to 

evaluate, monitor, and enhance its safety. This approach enables dynamic, continuous 

assessment of operational and environmental risks, helping organizations prevent 

accidents, optimize safety protocols, and ensure compliance with regulatory stand-

ards. 

3.2 Framework for design and implementation of Smart Digital Twin (SDT) 

The offshore oil and gas industry faces unique challenges in ensuring operational 

efficiency, safety, and risk mitigation. Adopting SDT technology provides an innova-

tive framework for addressing these challenges. SDT integrates real-time data from 

physical assets with virtual models, enabling continuous monitoring, predictive ana-

lytics, and decision-making support [16]. [32] discussed the application of artificial 

intelligence and automation in pipeline engineering to reduce engineering time and 

optimize design, particularly in the face of crude price uncertainty. 

The framework for designing and implementing an SDT for risk and safety as-

sessment includes the procedures and components shown in Fig. 3. 

 

Fig. 3. Framework for the use of SDT for risk and safety assessment 

 

 In the Input/data collection layer, real asset sensors, similar asset data, and envi-

ronmental data are sources for data collection through data acquisition and digital 

twin initialization. Data preprocessing (e.g., cleaning and standardization) is imple-

mented in the preprocessing layer for a quality digital representation. 
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3.3 Classifying Levels of Automation in Digital Twins (DTs) for Offshore Oil 

and Gas Platforms 

Research Objectives 

The primary objective is to develop a framework to classify levels of automation in 

Digital Twins (DTs) within offshore oil and gas (O&G) platforms by assessing the 

degree of integration and autonomy of SDT systems across their lifecycles. The im-

pact of human roles on the operation of DT through a multi-dimensional classification 

framework for stakeholders is to be established to evaluate and enhance automation 

capabilities. To ensure comprehensive classification, a two-step, bottom-up research 

methodology is implemented. 

Step 1: Identification of Digital Twin (DT) Functions 

Through the literature review, we extensively reviewed academic articles, industry 

reports, and case studies focused on Digital Twins in the O&G sector. Core function-

alities of DTs were identified, particularly in energy management and automation. We 

also used the expert consultation approach, which involves engaging with subject 

matter experts (SMEs) from academia, industry, and technology providers to validate 

and refine the list of DT functions. 

Based on the foregoing, a consolidated list of distinct DT functions, categorized 

based on their relevance to lifecycle stages (e.g., design, operation, maintenance), was 

established as an outcome. 

Step 2: Categorization of Human Roles in DT Systems 

The functions and potentials of DT relative to human roles are categorized into High-

er-Level Categories through the following approach: (1) Classifying the identified 

functions into broader categories (e.g., monitoring, control, prediction, optimization) 

using established frameworks from the literature and expert inputs. (2) Assessment of 

Human Impact: Analyzing the interaction between human operators and DT systems 

to determine the levels of human intervention (manual, semi-automated, fully auto-

mated) and assessing the impact of human roles on decision-making and system au-

tonomy. 

Step 3: Validation of Framework 

The developed framework is applied to a case study of real-world offshore oil and gas 

projects to test its robustness and practical applicability. A feedback loop assessment 

is implemented to collect feedback from industry stakeholders to refine the frame-

work iteratively. The findings are incorporated into the classification to ensure align-

ment with industry practices and technological advancements. 

Step 4: Classification Scheme 

A classification scheme is developed with levels of automation ranging from manual 

processes to fully autonomous DT systems. Key dimensions include integration (de-
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gree of data and system interconnectivity), autonomy (levels of automated decision-

making), and lifecycle coverage (stages of the DT lifecycle where the system is ap-

plied, e.g., development, real-time operations, decommissioning). 

Step 5: Expected Contributions 

Establish a roadmap for stakeholders to identify gaps and strategize DT autonomy and 

functionality advancements. Also, a standardized methodology for classifying DT 

automation in the O&G sector is established. This will enhance the understanding of 

the interplay between human roles and DT system performance. 

4 Implementation, Analysis, and Results 

Digital twin models incorporate deterministic and probabilistic approaches to simulate 

system performance and assess risks. Deterministic models, such as performance and 

behavioral models, simulate normal operating conditions and represent system inter-

actions. Probabilistic models, including failure and degradation models, logic and 

relational models, and surrogate models, predict failure likelihood and dependencies 

and provide computationally efficient approximations. Integrating these models in-

volves continuous validation and real-time data updates, ensuring robust and dynamic 

risk assessments. Risk assessment modules leverage probabilistic outputs to identify, 

quantify, and prioritize risks, enabling scenario evaluations and actionable insights for 

operations and maintenance. 

Interactive dashboards and visualization tools provide clear insights, enabling end-

users to explore scenarios, evaluate decisions, and optimize performance, reliability, 

and safety. This framework facilitates proactive risk mitigation by identifying and 

addressing potential issues before they escalate, improving safety for workers, equip-

ment, and the environment. 

4.1 Safety Assessment Decision-Making Integration to Digital Twin 

Human cognitive fatigue, often caused by information overload, repetitive tasks, or 

high-pressure decision-making, is a significant challenge in industries that rely on 

real-time data analysis, complex systems, and critical decision-making. Existing 

methods have not developed an approach for integrating decision-making models in 

digital twins, requiring human interaction. Bayesian network-based inference models 

provide a framework for integrating prior knowledge and real-time data for predictive 

modeling. Additionally, machine learning methods and Monte Carlo simulations can 

be used for risk assessment, enabling scenario-based analysis under various uncertain-

ty conditions [17]. 

The comprehensive and robust SDT specified in this paper helps to reduce human 

cognitive fatigue in the following ways: 1) Real-time and routine monitoring to pro-

cess data and provide information on critical trends and data points to operators in a 

visually friendly way, 2) Predict potential failures or inefficiencies, providing deci-

sion support for preventive actions, 3) Contextual information delivery using location-
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aware and task-specific insights, 4) Training and skill augmentation by simulating 

real-world scenarios for training, enhancing operator skills without exposing them to 

real-world risks. Fig. 4 shows the stages in building and integrating safety and deci-

sion-making models in SDT. 

 

Fig. 4. Integrating safety assessment and decision-making model into digital twin 

4.2 Digital Twin Categorization Framework 

Classifying levels of automation in digital twins (DTs) for offshore oil and gas plat-

forms requires assessing how integrated and autonomous the DT systems are across 

their lifecycles. There are a variety of approaches to methodologies, which can be 

attributed to several factors. One such factor is the growing interest in exploring and 

implementing Digital Twins (DTs) within the oil and gas (O&G) sector. This may 

lead to a lack of standardized reference methods and implementation classification 

levels. 

We took a two-step bottom-up approach to identify the impact of humans on DTs. 

First, we identified obvious DT functions. Then, we identified the roles by grouping 

those functions into higher-level categories based on literature and expert reviews. A 

multi-dimensional framework for classifying digital twins has been developed in en-

ergy management, including automation levels for search functionalities [33]. This 

classification system can be applied to digital twins in the oil and gas industry, as seen 

in the case study on offshore oil and gas drilling occupations [34]. Furthermore, many 

articles from O&G industry conferences emphasize presenting the final solution and 

its outcomes rather than delving into the methodological steps involved in designing 

the DT solution. Table 1 shows the percentage-based classification with examples for 

each level. 
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Table 1. Description for the basis of level classification 

S/N LEVELS DESCRIPTION APPLICATIO

NS 

EXAMPLES 

1. 

Manual 

Assistance 

0 – 20% 

The digital twin is 

primarily a visualiza-

tion and data reposi-

tory. Significant 

human intervention is 

required to interpret 

data and make deci-

sions. 

Used during the 

early adoption 

phase of digital 

twins for visuali-

zation. 

3D visualization of the platform’s 

structure for inspection planning. 

Data aggregation from various 

sources (e.g., sensors, historical logs) 

without real-time insights. 

Human-led failure diagnostics 

based on static models. 

2. 

Assisted 

Decision-

Making 

21 – 40% 

The DT provides 

recommendations but 

relies on operators to 

validate and imple-

ment decisions. 

Common in 

condition monitor-

ing and early 

predictive mainte-

nance systems. 

Condition monitoring using histor-

ical trends with basic alarms for 

anomalies. 

Recommendations for maintenance 

schedules based on equipment usage 

patterns. 

Simulations of “what-if” scenarios 

to predict outcomes of changes in 

platform operations. 

3. 

Semi-

Autonomous 

Operation 

41 – 60% 

The DT supports 

real-time decision-

making and partially 

automates certain 

processes. 

Utilized in ad-

vanced mainte-

nance and safety 

systems. 

Real-time monitoring with predic-

tive analytics for equipment failure. 

Semi-automated control of valves 

and pumps based on predefined rules. 

Feedback loops where the DT re-

fines simulations and predictions with 

live data. 

4. 

High Au-

tonomy 

61 – 80% 

The DT performs 

decision-making 

autonomously for 

well-defined tasks 

but requires human 

oversight for com-

plex or high-stakes 

decisions. 

Emerging in 

complex optimiza-

tion and real-time 

control. 

Autonomous scheduling of inspec-

tions and repairs based on predictive 

maintenance algorithms. 

Adaptive production optimization 

in response to reservoir dynamics or 

environmental conditions. 

Automated safety interventions, 

such as system shutdowns during 

hazardous events. 

5. 

Full Auton-

omy 

81 – 100% 

The DT operates 

independently, man-

aging and optimizing 

the platform without 

human intervention. 

A future state 

for offshore plat-

forms requiring 

robust AI, IoT, 

and regulatory 

alignment. 

End-to-end optimization of pro-

duction and safety systems, including 

drilling, extraction, and resource 

management. 

Real-time self-healing systems for 

equipment and infrastructure. 

Autonomous response to external 

variables (e.g., weather changes or 

market demand fluctuations). 

 

This classification can help stakeholders in the oil and gas industry assess their cur-

rent capabilities and roadmap for advancing the autonomy of their digital twins.  
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4.3 Case Study Results 

In the first step of identifying DT functions, a literature review of 50+ articles, includ-

ing reports on DTs in O&G, was carried out, emphasizing functions like real-time 

monitoring, predictive maintenance, and process optimization. Interviews were con-

ducted with 10 industry experts and professionals, including engineers, data scientists, 

and operations managers in the O&G sector, where the different stages in SDT im-

plementation were defined as: 1) design phase, 2) execution phase, 3) operation and 

maintenance (O&M), 4) decision management phase. 

The second step is the categorization of human function grouping based on Table 1 

and expert feedback. The following were defined for the allocation of weights for 

each group: 1) Monitoring - Real-time data acquisition and visualization, 2) Control - 

Incident response and manual adjustments, 3) Prediction - Predictive analytics and 

risk assessment, 4) Optimization - Energy and production efficiency improvements. 

 

 

Fig. 5. Human Involvement Levels in SDT Phases. 

The key observation is that the level of human involvement at different project 

stages varies. Higher autonomy reduces human involvement in decision-making how-

ever, it requires a lot of resources at its design and execution phase. 

To demonstrate a DT implementation and performance of a separation knockout 

drum on an offshore platform on the Norwegian Continental Shelf, 2 parameters were 

used: 1) Integration - Connectivity between DTs, physical systems, and external data 

sources 2) Autonomy: Extent of automated decision-making. The DT system moni-

tors the performance of a separation knockout drum, and the analysis shows that the 

current DT capability is Semi-automated (Level 2) using the methodology described 

in chapter 3. 

The framework validation compared the classification framework with similar use 

cases in the O&G industry. The feedback from industry experts validated the practi-

cality of levels and dimensions. The outcome identified gaps in current DT implemen-
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tations and provided actionable insights to advance DT autonomy from Level 2 to 

Level 3 or higher. 

Table 2. Case study result validation for the level of  DT 

Dimension Current 

Level 

Target Level Key Actions 

Integration Medium High 
Enhance connectivity with external sys-

tems. 

Autonomy Level 2 Level 3 Implement real-time decision-making. 

 

By applying this framework, the industry can systematically identify current capabili-

ties and devise roadmaps to achieve greater automation and integration in DT sys-

tems. 

5 Conclusion 

While developing autonomous and SDTs presents significant challenges, the reality is 

that most current and near-future DT systems will continue to depend on collabora-

tion between humans and computers. This makes it crucial to evaluate how DTs can 

complement and work alongside humans. However, as DT technology remains in its 

early stages of development, the oil and gas industry is still yet to harness its full po-

tential and define what levels they are in DT integration. The consequence of this gap 

is resource misallocation, cost explosion, unrealistic targets, and strategic misalign-

ment. 

This work has further defined another step in SDT by presenting a framework for 

incorporating automated safety decision-making based on real-time transformative 

advancement in digital twin technology, offering unparalleled safety and risk assess-

ment capabilities. Additionally, the SDT categorization framework has been pro-

posed. The framework is based on the level of human interaction with the DT model 

thus:  a) manual assistance (0 – 20 %), b) Assisted Decision-Making (21 – 40 %), c) 

Semi-Autonomous Operation (41 – 60 %), d) High Autonomy (61 – 80 %), e) Full 

Autonomy (81 – 100 %). Without a framework, planning digital twin (DT) deploy-

ments becomes more of a subjective exercise than a systematic process, as individuals 

offer unstructured suggestions regarding the roles DTs should fulfill and the extent of 

their automation [35]. 

A case study has been used to demonstrate its application and benefits in the oil 

and gas industry. The summary of key findings on the framework for reducing human 

cognitive fatigue and enhancing safety and operational effectiveness is reflected as a 

catalyst for safer, more efficient industrial environments. The categorization frame-

work plays a pivotal role in this process—not as a prescriptive tool dictating specific 

levels of DT implementation but as a flexible guide. It facilitates meaningful discus-

sions, comparisons, and communication among stakeholders, enabling them to evalu-

ate and prioritize digital opportunities. By using the framework, organizations can 
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navigate the complexities of digital transformation with a more informed and focused 

approach. 

5.1 Challenges and limitations 

Implementing SDT technologies faces several challenges, including data integration 

issues, cybersecurity risks, and high costs. Organizational resistance, driven by work-

force adaptation and change management challenges, further complicates adoption. 

Predictive accuracy limitations necessitate continuous model improvement. Specific 

to SDTs, barriers include computational complexity for real-time simulations, diffi-

culties in integrating heterogeneous data, challenges in quantifying and propagating 

uncertainties, and scalability concerns when applying models to large systems without 

compromising accuracy. These obstacles require innovative solutions to ensure effec-

tive deployment and utilization. 

5.2 Future Research Directions 

Areas for further study include refining predictive models, understanding human-

digital twin interaction, and improving cognitive support tools for practical implemen-

tation to enhance safety assessment decision-making. Integrating emerging technolo-

gies, like AI and IoT, to enhance digital twin capabilities requires reliability, robust-

ness, and resilience due to safety and environmental implications for humans. Edge 

computing enables real-time processing of digital twin data at the source, adaptive 

learning models that continuously learn and adapt to new data and conditions, en-

hancement of data security and integrity in digital twin systems, and development of 

regulatory frameworks and guidelines for the adoption of SDTs in safety-critical do-

mains are areas that require improvement. 
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