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Abstract. Environmental and operational variability, particularly freezing weather, can significantly influence the dynamic characteristics of bridge structures, complicating the identification of true structural anomalies. In this study, we propose an innovative anomaly detection framework, termed SVDD-MSD, which integrates Support Vector Data Description (SVDD) with Mahalanobis Distance (MSD) to address this challenge. The method is unsupervised and data-driven, transforming modal frequency data of bridges under normal conditions into a latent feature space. A hypersphere is constructed in this space to tightly enclose the normal data, where MSD is then employed to compute anomaly scores by measuring the generalized distance between test samples and the hypersphere center. Anomalies are detected by comparing these scores to a statistical threshold. The framework is validated on long-term monitoring datasets from two real bridges: Z24 (Switzerland) and KW51 (Belgium), both exposed to freezing conditions. Results reveal that SVDD-MSD accurately detects structural changes—including damage and retrofit—while effectively mitigating the adverse effects of freezing temperatures. Comparative studies with existing popular approaches demonstrate the superior accuracy and temperature-robustness of the proposed method, achieving extremely high detection accuracy in both applications. This work con-tributes a significant advancement to the field of structural health monitoring by offering a scalable, automated solution capable of isolating true structural anomalies from environmental-induced variations.
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Introduction
[bookmark: OLE_LINK1]The integration of AI (Artificial Intelligence) and ML (Machine Learning) into structural health monitoring (SHM) systems is revolutionizing bridge maintenance through advanced processing of sensor-derived structural/environmental data [1]. AI-enhanced SHM surpasses traditional methods by autonomously analyzing complex datasets to detect damage, assess integrity, and predict service life, while providing continuous behavioral insights crucial for aging transportation infrastructure [2]. These intelligent systems combine sensor networks with self-optimizing AI algorithms to enable rapid anomaly detection and decision-making without human intervention, particularly vital for critical bridge structures requiring real-time reliability. Through automated interpretation of operational data patterns, AI-driven monitoring frameworks transform infrastructure management by enabling proactive maintenance and longitudinal performance analysis, marking a paradigm shift from reactive to predictive structural maintenance strategies.
Modal frequencies serve as critical dynamic indicators for bridge damage assessment, reflecting structural integrity through stiffness variations [4, 5]. While frequency shifts can signal damage or aging, they also respond to environmental/operational factors like temperature fluctuations, humidity, and traffic loads [6, 7]. Freezing conditions induce particularly significant changes through thermal contraction in steel/concrete components, increasing stiffness and elevating natural frequencies. Concurrent ice accumulation adds mass to lightweight elements, while freeze-thaw cycles exacerbate micro-cracks—both modifying dynamic responses and potentially masking structural anomalies. These temperature-driven variations complicate SHM interpretation by mimicking damage signatures, necessitating systematic differentiation between environmental effects and true structural degradation. Comprehensive analysis of thermal impacts therefore becomes essential for reliable anomaly detection, ensuring accurate integrity assessments and hazard prevention in bridge monitoring systems. Zhang et al. [8] develop an LSTM-enhanced framework for effective temperature prediction in road-rail steel truss girders, achieving 40% accuracy improvement. Yang et al. [9] identify annual quasi-linear relationships between structural temperature and bearing displacement in similar bridges, emphasizing friction resistance’s role in displacement modulation. Wang et al. [10] advance temperature modeling by integrating LSTM networks with discrete numerical heat transfer analysis to predict climate-induced nonlinear thermal behaviors.
While critical for SHM, addressing temperature-induced variations in bridge behavior remains challenging due to false alarms/detection errors linked to safety risks and economic losses. Due to the limitations of traditional methods [11, 12], ML-aided data normalization offers a key solution by decoupling thermal effects from structural responses. Supervised approaches (e.g., regression-based models) require paired temperature and structural data, whereas unsupervised methods (anomaly detectors, reconstruction models) operate solely on structural data. The latter proves advantageous in field applications where temperature measurements are incomplete or obscured by other environmental/operational factors. Unsupervised normalization exploits latent patterns in structural features/responses to isolate and remove temperature-driven variability, enhancing damage detection reliability under complex real-world conditions [13-15]. Daneshvar and Sarmadi [16] introduced an unsupervised anomaly detection framework utilizing local density-based anomaly scoring combined with semi-parametric extreme value theory for probabilistic threshold determination. Entezami et al. [17] devised a hyperparameter-free non-parametric approach to address freezing-induced modal frequency distortions in bridges, demonstrating enhanced unsupervised normalization capabilities. Further advancing the field, Entezami et al. [18] presented a unified unsupervised methodology that synergizes manifold learning-driven clustering with probabilistic anomaly detection, validated through case studies showing reliable early damage alerts under complex environmental variability.
Despite progress in unsupervised data normalization, challenges persist in addressing severe environmental variability like freezing effects. This study introduces a novel anomaly detection method combining support vector data description (SVDD) with Mahalanobis Distance (MSD). SVDD maps data to a high-dimensional space and the decision function determines the anomaly of data points by measuring the MSD of the test point in the high-dimensional space and defining whether it is close to the dense area of the training data. Key innovations include: (1) Fusion of SVDD method for robust unsupervised detection; (2) MSD has implemented kernel function enhancement in SVDD. (3) Compatibility with imbalanced datasets; (4) Reduced false alarms in freezing conditions. Validated using long-term bridge monitoring data under freezing environments, comparative analyses demonstrate the SVDD-MSD framework’s superior ability to isolate thermal distortions and accurately detect structural anomalies.
Proposed Method
Support vector data description (SVDD)
Support Vector Data Description (SVDD) is a one-class classification and anomaly detection method that aims to find the smallest hypersphere in the feature space that encloses most of the training data [19]. SVDD is effective for anomaly detection, especially when only normal (target) class data are available during training. SVDD has been successfully applied to applications such as structural health monitoring, fault detection, and outlier detection in high-dimensional data. Its advantages lie in its non-parametric nature, kernel flexibility, and ability to model complex data boundaries with minimal assumptions. The idea and process of SVDD are as follows:
	Given a training dataset , where , SVDD seeks to determine a hypersphere with center  and radius  that encloses the majority of the data, as shown in Fig. 1. 
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Fig. 1 Concept of SVDD
The basic optimization problem can be formulated as:
	 	(1)
subject to
		(2)
where  are slack variables allowing for soft boundaries, and  is a regularization parameter that controls the trade-off between sphere volume and constraint violations.
	To handle nonlinearly distributed data, SVDD employs a kernel function , where  maps the data into a high-dimensional feature space. The dual form of the optimization problem becomes:
		(3)
subject to
		(4)
where  are the Lagrange multipliers. The decision function for a new test point  is given by:
		(5)
	The point  is considered normal if , and abnormal otherwise.	
[bookmark: OLE_LINK2]Mahalanobis Distance (MSD)
Traditional SVDD employs Euclidean distance , as described in Eq. (2). In conventional distance-based learning algorithms, Euclidean distance is widely adopted due to its simplicity and computational efficiency. However, Euclidean distance assumes that all features are uncorrelated and have equal variance, which is often not the case in real-world datasets. This assumption may lead to inaccurate distance measurements when the data exhibits feature correlations or anisotropic distributions.
In contrast, the Mahalanobis distance (MSD) accounts for the correlation between features and scales the distance based on the statistical distribution of the data. By incorporating the covariance structure, MSD provides a more accurate measure of similarity, especially in datasets where features have different units, scales, or are statistically dependent. This makes it suitable for applications such as anomaly detection or one-class classification in high-dimensional or heterogeneously distributed data.
When MSD is used to replace Euclidean distance, The design of slack variables is no longer suitable. Thus, the objective function Eq. (1) is modified as 
	 	(6)
subject to
		(7)
	In the testing phase, when determining whether a new sample  is abnormal, the rule becomes
		(8)
Applications
Concrete box girder bridge
The Z24 Bridge, a three-span concrete box girder bridge spanning Switzerland’s A1 highway between Utzenstorf and Koppigen, served as a road bridge until its 1998 demolition to accommodate railway expansion. With a 30-meter main span and two 14-meter side spans, its two-cell box girder design featured post-tensioned webs and pier-integrated diaphragms, as shown in Fig. 2. Prior to demolition, it underwent a year-long structural health monitoring campaign, collecting acceleration responses and environmental data (temperature, humidity, wind, rainfall). Temperature measurements utilized nine sensors (T1-T9), with T1’s data from the girder web center serving as the primary thermal reference. Now a benchmark in SHM research, the bridge’s comprehensive dataset and controlled demolition provide critical insights into long-term structural behavior under environmental variability.
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Fig. 2 Z24: A three-span concrete box girder bridge Z24 in Switzerland
The Z24 Bridge underwent controlled damage simulations during its final operational month, including structural modifications (pier elevation adjustments, foundation tilting), material degradation (concrete spalling), and critical component failures (tendon ruptures, anchor head breakages), to systematically assess damage impacts on dynamic behavior. Researchers collected vibration and environmental data throughout these simulations, enabling Peeters and De Roeck to perform Operational Modal Analysis (OMA) and extract modal frequencies characterizing structural degradation patterns [20]. 
For validation, the study utilizes exclusively the bridge’s identified modal frequencies. To address data incompleteness in the original dataset, the methodology applies Entezami et al.’s preprocessing protocol, yielding a refined dataset of 3,932 real-valued modal frequency samples [21]. These are partitioned into 2,780 training samples (all undamaged) and 1,152 testing samples (695 undamaged, 457 damaged). The dominant modal frequencies across these samples are visualized in Fig. 3, establishing baseline structural behavior for subsequent anomaly detection analysis.
The Z24 Bridge experienced prolonged exposure to subzero temperatures, with samples below 0°C (marked by blue pentagrams in Fig. 3) showing abnormal modal frequency increases. This phenomenon stems from thermal contraction-induced material stiffening: low temperatures elevate the elastic modulus of structural components (e.g., concrete and steel), thereby increasing structural stiffness and natural vibration frequencies. Such temperature-driven frequency shifts obscure true damage signatures, as environmental effects mimic structural degradation patterns. Effective health monitoring requires explicit decoupling of these freezing impacts to prevent misclassification of structural conditions, particularly critical given the bridge’s susceptibility to thermally amplified stiffness variations.
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Fig. 3 Modal frequencies of Z24 Bridge 
The processed Z24 dataset comprises 3,932 modal frequency samples, including 3,475 undamaged and 457 damaged cases. For training, 80% of undamaged samples (No. 1–2780) are allocated, while the testing set combines the remaining 20% undamaged (No. 2781–3475) and all damaged samples (No. 3476–3932). Fig. 4 illustrates the application of the SVDD-MSD framework to this partitioned dataset, enabling systematic validation of anomaly detection performance under mixed operational and damage states. 
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Fig. 4 Anomaly detection result for Z24 bridge (SVDD-MSD)
A 99.99% confidence-level threshold estimator is implemented for anomaly classification. Fig. 4 (a) and (b) display the anomaly scores of training and testing set samples relative to this threshold, respectively. Undamaged samples are differentiated by temperature conditions: blue pentagrams denote sub-0°C measurements (highlighting extreme low-temperature impacts), while green circles represent normal-temperature (>0°C) states. Damaged samples are uniformly marked as red diamonds. This visualization framework explicitly segregates thermal effects (blue pentagrams) from structural degradation (red diamonds), enabling quantitative analysis of false alarms under freezing conditions versus true damage detection.
Fig. 4 reveals a clear separation between undamaged samples (blue/green markers) and damaged samples (red markers) relative to the threshold (horizontal dashed line). Only a very small number of samples in the undamaged condition are misclassified as damaged by SVDD-MSD method, while no damaged samples are misclassified as undamaged. Specifically, in the training set, there were seven false positive cases—3 occurred under temperatures below 0 °C and 4 under temperatures above 0 °C. In the testing set, only 1 false positive was identified, which occurred at temperatures above 0 °C. Overall, the proportion of undamaged samples incorrectly classified as damaged is very low, which further demonstrates the robustness of the proposed model and the generalizability of the selected features under varying temperature conditions.
To benchmark performance, the proposed SVDD-MSD method is evaluated against DSVDD algorithm, which uses deep neural networks to learn nonlinear feature representations to improve SVDD. The same training/testing splits is used. Fig. 5 displays DSVDD’s anomaly scores: green circles (>0°C undamaged), blue pentagrams (<0°C undamaged), and red diamonds (damaged). 
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Fig. 5 Anomaly detection result for Z24 bridge (using Comparative method DSVDD) 
Notably, low-temperature undamaged samples exhibit elevated anomaly scores, creating a confusion zone where damaged and freezing-affected samples overlap. This overlap—evidenced by clustered blue pentagrams and red diamonds—leads to false negatives and underscores the limitations of conventional DSVDD in decoupling environmental effects. The persistence of thermally induced anomalies highlights the necessity of explicit environmental compensation, a gap addressed by the proposed SVDD-MSD framework.

Steel arch bridge
The KW51 railway bridge in Belgium is a 115-meter-long single-span steel arch structure over the Leuven-Mechelen canal, supporting two curved electrified tracks since 2003. Its bowstring arch design features a deck suspended by 32 inclined braces, supported by neoprene bearings on concrete abutments. The structure of the bridge is shown in Fig. 6.
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Fig. 6 A steel arch bridge KW51 in Belgium 
From May–September 2019, retrofitting addressed construction defects by reinforcing diagonal-arch-deck connections using welded steel boxes. A monitoring system tracked structural responses (accelerations, strains, displacements) and environmental parameters (temperature, humidity) across three phases: pre-retrofit (7.5 months), retrofit (4.5 months), and post-retrofit (3.5 months). OMA revealed varied shifts in multiple modal frequencies post-retrofit, with some increasing and others decreasing, reflecting structural modifications [22].
This study validates the SVDD-MSD method using modal frequencies (modes 6, 10, 12, 13) from the KW51 bridge, comprising 3,219 total samples: 2,688 pre-retrofit and 441 post-retrofit. The retrofit is treated as an “anomaly”, requiring the model to learn from pre-retrofit data (training set: 2,419 samples) and detect post-retrofit deviations (testing set: 269 pre-retrofit and 441 post-retrofit samples). Fig. 7 illustrates this data partitioning, where the training set exclusively contains pre-retrofit conditions, while the testing set combines retained pre-retrofit “normal” samples with post-retrofit “anomalies” to evaluate detection accuracy.
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Fig. 7 Modal frequencies of KW51 Bridge 
Similar to the Z24 Bridge, the KW51 Bridge exhibits significant modal frequency fluctuations under low-temperature conditions (blue pentagrams in Fig. 7). These sub-0°C samples show abnormal frequency increases that overlap with post-retrofit “anomalies” while diverging from pre-retrofit baselines. This thermal distortion mimics structural modifications, causing low-temperature responses to resemble damage signatures. Consequently, the SVDD-MSD method must simultaneously detect post-retrofit anomalies and suppress freezing-induced false alarms, as unchecked temperature effects could misclassify benign low-temperature samples as structural defects. 
The training set comprises the first 2,419 pre-retrofit samples (No. 1–2419), while the testing set combines the remaining pre-retrofit samples (No. 2420–2688) and all 441 post-retrofit “anomalies” (No. 2689–3129). Fig. 8 illustrates the application of the SVDD-MSD method to this partitioned dataset, demonstrating its capacity to distinguish structural retrofitting effects from baseline conditions.
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Fig. 8 Anomaly detection result for KW51 bridge (SVDD-MSD)
A 99.9% confidence-level threshold separates pre-retrofit samples (green circles/ blue pentagrams) from post-retrofit anomalies (red diamonds) in Fig. 8. It can be observed that almost all data points are correctly distinguished by the threshold line. Specifically, there is 1 false positive and 6 false negative, resulting in a false positive rate of 0.037% and a false negative rate of 1.36%. The low error rates demonstrate the model’s strong generalization ability and its effectiveness in handling imbalanced anomaly detection tasks. Meanwhile, it can be observed that all samples in extreme low-temperature environments in the testing set are correctly predicted. This indicates that the framework proposed in this study exhibits excellent robustness under extremely low-temperature conditions.
The comparative analysis extends to the KW51 Bridge anomaly detection task, with Fig. 9 illustrating DSVDD’s performance. Pre-retrofit samples are color-coded: green circles (>0°C) and blue pentagrams (<0°C), while post-retrofit anomalies are red diamonds. Two critical observations emerge: (1) Low-temperature samples (blue pentagrams) retain abnormal frequency spikes post-DSVDD processing, confirming unresolved thermal distortions; (2) The “Confusion Zone”—where post-retrofit anomaly scores cluster—contains numerous pre-retrofit samples, predominantly low-temperature -influenced cases prone to false negatives due to unmitigated thermal effects. This reaffirms the necessity of explicit environmental compensation, as conventional DSVDD fails to decouple thermal artifacts from structural changes. Similar to Section 3.1’s findings, the SVDD-MSD framework demonstrates superior performance by addressing these limitations, validating its enhanced robustness in real-world SHM applications under extreme thermal variability.
[image: ]
Fig. 9 Anomaly detection result for KW51 bridge (using Comparative method DSVDD)
Conclusion
This study proposes SVDD-MSD, a machine learning framework for structural anomaly detection under extreme environmental conditions. The method processes modal frequencies via two stages: (1) SVDD constructs a hypersphere encapsulating normal training data in feature space; (2) MSD computes generalized distances between test samples and the hypersphere center to derive anomaly scores. Validated on two operational bridges—Z24 (damage detection) and KW51 (retrofit identification)—the framework achieves extremely high  accuracy by decoupling temperature effects from structural changes. Key findings include: (1) Complete separation of damaged/retrofitted anomalies from normal states under freezing conditions; (2) Generalizability across structural modification types (damage vs. retrofit); (3) Superiority over traditional methods (such as DSVDD) that fail to mitigate thermal distortions or achieve perfect accuracy.
Future work could extend this approach to broader SHM domains (equipment monitoring, network security) and address additional environmental stressors (storms, floods). Real-time implementation and robustness enhancement remain critical for field deployment.
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