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Abstract. Prediction of the dynamic behavior of civil structures, particularly multi-story timber buildings, offers valuable opportunities to reduce reliance on extensive field measurements. Although environmental parameters such as relative humidity, temperature and moisture content significantly influence timber structures, regression-based prediction becomes particularly challenging when available environmental data are either limited or weakly correlated. Limited dynamic response data (e.g., modal frequencies from short-term monitoring programs) and weak environmental-response correlations often prevent traditional regression methods from establishing accurate, robust predictive relationships, resulting in poor predictive reliability. To address these challenges, this study proposes a novel tree-based hybrid kernelized regression approach, termed Decision Tree Residual-embedded Gaussian Process (DTRGP). This method innovatively integrates decision tree regression (DTR) with a tree learning mechanism and Gaussian process regression (GPR) based on the concept of probabilistic kernel learning framework. The proposed method leverages advanced machine learning algorithms such as residual learning and hybrid modeling to develop a robust regressor for weakly correlated environmental-response relationships. Initially, a DTR model per each response is constructed using available and measured data. Residuals between measured and DTR-predicted responses are then determined to extract latent environmental patterns, which can supplement the originally measured environmental data. Both measured environmental and residual-augmented data are combined to form an enhanced predictor dataset for training a GPR model. The proposed DTRGP method is validated using the identified modal frequency data from an eight-story cross-laminated timber building alongside with real environmental data from a nearby weather station. Results demonstrate that the proposed method substantially improves prediction accuracy of the building modal frequencies, even under conditions of limited response data and weakly correlated environmental-response relationships.
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Introduction
Timber buildings, characterized by their sustainable construction, lightweight framing, excellent strength-to-weight ratio, and aesthetic versatility, have gained increasing popularity in contemporary architecture and civil engineering. Timber as a construction material offers notable environmental benefits, such as reduced carbon footprint, renewability, and energy efficiency, making it highly attractive for modern sustainable constructions. However, such civil structures are inherently sensitive to environmental factors, particularly temperature fluctuations, humidity variations, and moisture content, which can cause dimensional changes, shrinkage, swelling, creep deformation, and progressive material degradation over time.
	Structural health monitoring (SHM) is a modern technology for preserving civil structures from deterioration, unexpected failure, and catastrophic collapses, which can provide engineers and asset managers with timely information on structural performance, facilitating proactive maintenance and informed decision-making. SHM of timber buildings becomes critical to maintain structural integrity, ensure occupant safety, and achieve optimal lifespan performance [1]. Generally, effective SHM involves periodic (short-term) and continuous (long-term) monitoring of essential structural responses (e.g., modal parameters, displacements, strains, etc.) and influential environmental factors (e.g., temperature, humidity, wind, etc.) to promptly detect early stages of any anomaly in structural behavior, locate damage areas, and estimate damage severities for effective and efficient decision-making [2].
While field measurements via different sensing and data acquisition systems are inescapable steps of SHM [3-6], some important challenges cause obstacles to fully benefit from this technology. In practice, sensing systems often encounter difficulties such as sensor malfunctions, noise contamination in measurements, limited accessibility to critical structural locations, harsh environmental conditions affecting sensor performance, and high costs associated with long-term deployment and data collection. Moreover, gathering comprehensive data across all operational and environmental scenarios is challenging, leading to gaps and uncertainties in recorded data. To address these challenges, machine learning-based response prediction has emerged as a powerful and efficient solution. This approach leverages on regression-based predictive models to accurately estimate structural responses (outputs) by considering and measuring influential input sources. More precisely, machine learning-aided response prediction requires predictor or independent data that are the main reasons for changes in structural responses. In SHM, environmental and operational sources as well as external loads make the main predictor data. Such data play a significant role in reliable regression modeling and prediction accuracy of regression-based predictive models.
Given different predictor sources, regression techniques have been proposed to predict various structural responses. These techniques often leverage two types of regression models based on statistical learning and deep learning [7]. Statistical regression models typically rely on explicit structures of data to establish direct linear or nonlinear relationships between predictor variables and response data. These models are advantageous for their interpretability, straightforward implementation, and relatively low computational cost, particularly effective when dealing with structured data and clear predictor-response relationships [7]. In contrast, deep regression models emanate from the concepts of artificial neural networks to implicitly capture highly complex and nonlinear relationships between the predictors and responses.
Despite extensive studies proposing various regression models for predicting structural responses such as Gaussian process regression (GPR) [8], support vector regression (SVR) [9], decision-tree regression (DTR) [10], random forests (RF) [11], regression-based artificial neural networks such as feedforward neural network [12], long-short-term-memory (LSTM) [13], convolutional neural networks (CNN) [14], ensuring the applicability and reliability of these techniques can be challenging when the predictor-response relationships are weakly correlated. 
Generally, regression modeling assumes that predictor variables significantly contribute to the variability observed in structural responses. Under this assumption, a well-trained regression model can accurately capture these relationships and reliably predict unseen or future structural response data by applying new predictor data from the same conceptual domain. However, when predictor and response data exhibit weak or negligible correlations, traditional regression models struggle to detect meaningful underlying patterns, leading to poor predictive accuracy and unreliable outcomes. Weakly correlated datasets often introduce high variance and instability during model training, where even minor noise or irrelevant predictors can significantly degrade model performance and generalization capabilities. Furthermore, weak correlations complicate feature selection, making it difficult to identify which predictors genuinely influence structural responses. Consequently, models may overfit irrelevant data or noise, resulting in unreliable and unstable forecasts. These challenges highlight the necessity for more sophisticated regression modeling approaches that leverage advanced machine learning algorithms capable of developing novel learning strategies to overcome the limitations posed by weak predictor-response relationships.
This study presents a novel tree-based hybrid kernelized regressor called Decision Tree Residual-embedded Gaussian Process (DTRGP) to predict modal frequencies of timber buildings in the presence of limited and weakly correlated data. The proposed method introduces a hybrid regression architecture that synergistically combines the strengths of DTR and GPR. A key innovation of this approach relies on the residual learning mechanism, where the residuals obtained from the DTR model, trained on the original predictor and response data, are utilized to reveal latent environmental patterns. These residuals are interpreted as supplementary environmental features and are fused with the measured environmental data to construct an enhanced predictor dataset. This dataset is then used to train a GPR model within a unified probabilistic kernel learning framework, enabling the extraction of complex and nonlinear relationships between the enhanced predictor and measured modal frequencies. 
The major innovation of this study is to develop a hybrid regression model by leveraging the concept and advantage of the residual learning. In contrast to the traditional regression approaches, which rely solely on measured data, the residual learning framework of the proposed DTRGP method can extract hidden patterns from the discrepancies between measured and predicted responses of the first regressor (i.e., DTR), thereby revealing latent environmental influences. Another key innovation is the integration of tree-based learning with probabilistic kernel learning, which allows for both the interpretability of DTR and the uncertainty quantification capability of GPR.
The method is validated using real-world data from an eight-story cross-laminated timber (CLT) building, including identified modal frequencies from a short-term monitoring program and environmental factors provided from a weather station located at a considerable distance from the building. Results confirm that the proposed DTRGP method significantly improves the prediction accuracy of the building modal frequencies, even when using limited and weakly correlated input data.
Proposed Method
This section describes the proposed DTRGP method for predicting the modal frequencies of timber buildings. Conceptually, this method begins by measuring or providing the original predictor and response data. Given that the temperature, relative humidity (RH), absolute humidity (AH), equilibrium moisture content (EMC), wind speed, and wind direction are the main measured predictor (environmental) parameters, the original data include the predictor matrix , where n and p denote the numbers of observations (i.e., test measurements for training a regression model) and predictor variables (i.e., p=6), and the response vector . Note that the response vector is equivalent of the modal frequency samples of one mode. Depending on the number of modes, one needs to develop the same number of the regression models. In this study, the identified modal frequencies of three modes are considered; hence, it is necessary to use three DTR models in the first phase of the proposed method and three GPR models for the second one.
DTR Modeling by Original Data
In the first phase of the proposed framework, a DTR model per each response vector is developed using the measured environmental data as input predictors and the modal frequencies of the structure as the output response. In machine learning, the DTR is a supervised learning model that aims to partition the input space (i.e., the original predictor and response data) into a set of disjoint regions based on the values of the predictor variables [7: Chapter 9]. At each internal node of the tree, a splitting rule is selected by minimizing a loss function to divide the dataset into subsets that are increasingly homogeneous in terms of the response variable. Once the input space is fully partitioned, each terminal node (or leaf) of the tree assigns a constant prediction value, usually the mean of the response values in that region. One of the key advantages of DTR is its ability to capture nonlinear relationships and high-order interactions between predictor variables without requiring prior assumptions about the functional form of the data. It is also inherently interpretable, as the decision rules can be visualized and understood in a hierarchical manner.
Mathematically speaking, the DTR model builds a piecewise constant approximation of the response by recursively partitioning the input space. At each node of the tree, the algorithm selects the predictor variable and threshold that minimize the mean squared error (MSE) of the split. The objective at each split is to find a partition R1 and R2 such that:
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where j is the index of the selected predictor variable; s denotes the splitting threshold; and c1, c2 are the constant predictions in regions R1 and R2, respectively. Hence, the regions can be defined as:
	
	
	(2)
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Once the tree structure is established through recursive splitting, the final DTR model can be expressed as the following function:
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where M is the number of terminal nodes (leaves) in the decision tree;  is the k-th region (i.e., partition of the input space) defined by the decision rules in the tree; ck represents the predicted constant value from the mean of the response values in region Rk; and  is an indicator function that equals one if x∈Rk, and zero otherwise. It is necessary to clarify that DTR requires the minimum number of observations per leaf node (NL) that can control the minimum number of training samples required at each terminal node (leaf), which directly influences the number of regions M, as expressed in Eq. (4). Moreover, this regressor relies on the minimum number of observations required at a node (NP) for it to be eligible for splitting. This directly affects whether a new region (i.e., partition) is formed in the recursive splitting process described in Eqs. (1)–(3). If a node (leaf) contains fewer than N1, no further split is attempted, and the node becomes a terminal region Rk as described in Eq. (4). On the other hand, the DTR needs the maximum number of splits (NS) to constrain the total number of allowable splits during training, effectively limiting the maximum complexity of the tree and controlling model capacity. The variables (i.e., NL, NP, and NS) are the key hyperparameters of the DTR, which affect its overall performance.
The function fDTR means that each new input (predictor) vector x is routed through the decision tree to fall into exactly one region Rk, and the corresponding prediction is the constant ck ​associated with that region. Therefore, the i-th sample of the response data, where i=1,…,n, is estimated as follows:
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where  is the i-th row of the predictor matrix X, representing the measured environmental variables for the i-th observation or test measurement. On the other hand, the training process of the DTR modeling relies on minimization of the error function:
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After training the DTR model on the original measured dataset (X,y), serving as the inputs to the proposed DTRGP method, the n-dimensional residual vector  is computed to quantify the discrepancy between the predicted and actual responses and extract the latent predictors. Indeed, this vector is the output of the first phase of the proposed method. 
GPR modeling by Enhanced Residual-Augmented Data
In the second phase of the proposed framework, a GPR model per each response vector is developed using the enhanced dataset formed by combining the original predictors with the residual data obtained from the initial DTR model. This residual-augmented dataset is intended to reconstruct latent information related to unmeasured or weakly represented environmental and operational influences, thereby improving the predictive power and accuracy of the proposed method.
Given that  and  are the original predictor matrix (e.g., the measured environmental parameters), and the residual vector, respectively, enhanced predictor matrix is constructed by augmenting the original predictors with the residual vector in the following form:
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where  denotes the number of enhanced predictor variables, which . It should be noted that since the residual data are derived from the differences between the original and predicted response vectors, the DTR and GPR regression modeling processes produce one residual vector per response variable. Thus, a separate enhanced predictor dataset is constructed for each response. In this study, where the response variable corresponds to the modal frequency of each vibration mode, an individual enhanced predictor dataset is generated for each mode.
The augmented predictor matrix  along with the original response vector y are applied to the GPR model. This regressor treats the prediction of the modal frequencies as a realization of a multivariate Gaussian distribution over functions. Formally, the GPR assumes that the underlying function fGPR follows a Gaussian process (GP) prior [15]:
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where  is the mean function (typically assumed to be zero) of each predictor variable (vector) of the enhanced predictor matrix ; and  represents the covariance or kernel function (matrix) that encodes the similarity between two different predictor variables  and [16]. In the GPR modeling, some important kernel functions tuned by Bayesian hyperparameter optimization are derived from exponential kernel (), and rational quadratic kernel (), as expressed in the following forms:
	
	
	(9)

	
	
	(10)


where  and  denote the kernel variances; l is the kernel length of the exponential kernel function; h stands for the kernel length of the rational quadratic kernel function; and α is the shape parameter of the rational quadratic kernel, which controls the weight of different length scales.
A fundamental aspect of GPR is that the functions  and  serve as the foundation of the prior knowledge embedded within the model. This formulation enables the generation of output predictions by incorporating observed outputs and evaluating the joint posterior distribution. Based on this framework, one can estimate the response values by sampling from the posterior and computing both  and . In this context, the predictive distribution for a new input (predictor sample)  is derived by conditioning on the training data, resulting in:
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where I is the identity matrix;  stands for the normal distribution model; and the term represents the variance of the noise component in the observed response values. The predicted response  is then given by:
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Performance Evaluation Metrics
To assess the predictive accuracy and robustness of the proposed regression model, four widely used evaluation metrics are employed: R-squared (R²), root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). These metrics collectively capture different dimensions of prediction performance, including goodness-of-fit, average error magnitude, and relative error behavior.
The R² metric measures the proportion of variance in the observed response variable that is explained by the regression model. It provides a general measure of goodness-of-fit and ranges from –1 to 1. Higher values closer to 1 indicate a strong predictive model, while values near 0 or negative suggest poor performance. Given the n-dimensional original and predicted responses, termed as y and ŷ, the R² is expressed as follows:
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where ​ is the average of the original response samples. 
The RMSE metric quantifies the average magnitude of prediction error by taking the square root of the mean of the squared differences between actual and predicted responses. It penalizes larger errors more heavily due to the squaring term, making it sensitive to outliers. Accordingly, lower RMSE values indicate more accurate predictions and better model performance. Using the original and predicted response vectors, the RMSE function is given by:
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	The MAE metric represents the average of the absolute differences between predicted and actual responses. Unlike RMSE, it treats all errors equally, providing a linear and interpretable measure of average error magnitude. However, similar to RMSE, smaller MAE values suggest better predictive accuracy and reduced overall error. The MAE metric is defined as follows:
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Eventually, the MAPE measure expresses the prediction error as a percentage of the true values, making it scale-independent and suitable for comparing model performance across different datasets or units. It calculates the mean of the absolute percentage errors between predicted and actual responses in the following form:
	
	
	(16)


Lower MAPE values indicate that the model provides highly accurate predictions in relative terms.
Experimental Verification
This section introduces the eight-story residential CLT building, which is used to verify the effectiveness and reliability of the proposed DTRGP method. This building, as shown in Fig. 1(a), is located in the Kvarter Limnologen area in Växjö, Sweden. The building is among the first constructed in the "Välle Broar" district, a city development initiative aimed at promoting sustainable timber construction and environmentally conscious building practices. The ground floor is constructed with cast-in-place concrete, while the upper stories utilize a CLT-based system in combination with a stud-and-rail linear timber frame. The floor structure employs a hybrid solution, combining CLT panels with glulam T-beams. The concrete base contributes to the building’s stability and adds mass for dynamic performance enhancement.
	(a)
	(b)
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[bookmark: _Ref194913275]Fig. 1. (a) The eight-story Limnologen CLT building located in Växjö, Sweden, (b) the plan view of the building and sensor layout
The primary load-bearing structure consists of CLT elements, including all external walls and some internal partitions. External walls are composed of CLT panels with thicknesses of either 85 mm or 95 mm. Internally, two types of wall systems are used: lightweight timber frame partitions, primarily for apartment separation, and 95 mm thick CLT panels. The floor system is made up of three-layer CLT slabs, each 73 mm thick and prefabricated with a standard width of 2400 mm. These slabs are supported by glulam T-beams featuring webs measuring 42 x 220 mm and flanges of 56 x 180 mm. Fig. 1(b) illustrates the plan view of the timber building with the sensor’s location.
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[bookmark: _Ref197260542]Fig. 2. Modal frequencies of the timber building during the short-term monitoring program: (a) mode 1, (b) mode 2, (c) mode 3
As a part of a SHM program, a series of ambient vibration tests were performed between November 11, 2024, and April 23, 2025, and they are still on-going. Acceleration time histories were recorded using accelerometers installed along the  x and y directions under the roof near to the West elevator shaft, as indicated in Fig. 1(b). Measurements were collected at four daily intervals with a sampling frequency of 2048 Hz. An operational modal analysis (OMA) was carried out using the stochastic subspace identification (SSI) technique to extract the modal parameters of the building. Three stable modes were consistently identified throughout the monitoring campaign, yielding three sets of 377 samples of modal frequencies. Fig. 2 presents the modal frequencies of the timber building over the short-term monitoring period.
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Fig. 3. The main environmental parameters during the short-term monitoring program of the timber building: (a) temperature (⸰C), (b) RH (%), (c) EMC (%), (d) AH (kg/m3), (e) wind speed (m/s), (f) wind direction (⸰)
Recognizing the sensitivity of timber structures to environmental conditions, the temperature (⸰C), relative humidity (RH), absolute humidity (AH), equilibrium moisture content (EMC), wind speed, and wind direction were provided from an official weather station located approximately two kilometers from the building in Växjö. The samples of these parameters are aligned with the 377 modal frequencies to construct a dataset suitable for regression and prediction. Fig. 3 illustrates the variability of the environmental inputs during the same monitoring period. In the context of regression modeling, the modal frequencies represent the primary dynamic responses, while the environmental variables serve as the original or measured predictors.
Correlation Analysis
As an initial step in evaluating the proposed DTRGP framework, a correlation analysis is conducted to examine the relationships between the original environmental predictors and the modal frequencies of the Limnologen building. To explore the relationships between the environmental predictors and modal frequencies of the timber building, a comprehensive correlation analysis is performed by using multiple statistical measures, including (i) linear correlation evaluation via Pearson’s correlation coefficient, and Spearman’s rank correlation as shown in Fig. 4, and (ii) partial correlation analysis, which measures the strength and direction of the linear relationship between the predictor and response variables after removing the effect of one or more predictor variables, as presented in Fig. 5.
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[bookmark: _Ref197276380]Fig. 4. Correlation analysis between the original predictors (i.e., temperature, RH, EMC, AH, wind speed, and wind direction) and modal frequencies of three modes: (a) Pearson’s correlation, (b) Spearman rank correlation
From Fig. 4, it can be discerned that all the environmental parameters yield correlation coefficient smaller than 0.55, which confirms the weakly correlated predictor-response relationships. More precisely, the RH and EMC show moderate positive linear correlations with modal frequencies (e.g., between 0.45~0.47 regarding Pearson and Spearman correlations for Mode 1), temperature consistently shows a negative relationship, with Pearson and Spearman correlation values as low as –0.5028 and –0.5156 for Mode 1, respectively. These findings suggest a moderately inverse monotonic trend for temperature and weak-to-moderate positive monotonic trends for RH and EMC. Wind-related parameters (i.e., speed and direction) demonstrate very weak or near-zero correlations across all modes in both the correlation coefficient measures.
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[bookmark: _Ref197276474]Fig. 5. Partial correlation between the original predictors (i.e., temperature, RH, EMC, AH, wind speed, and wind direction) and modal frequencies of three modes
The partial correlation analysis provides a deeper understanding of the direct, independent influence of each environmental predictor on the modal frequencies of the timber building, after controlling for the effects of all other predictors. In contrast to the standard correlation measures (e.g., Pearson and Spearman), partial correlation removes shared variance among predictors, offering a clearer picture of unique correlations between individual environmental parameter and modal frequencies. As shown in Fig. 5, most partial correlation values fall within the narrow range of –0.001 to +0.16, indicating very weak relationships between the environmental variables and modal frequencies. This further confirms that the measured environmental parameters, taken individually, have limited explanatory power over the modal frequencies of the timber building. 
More precisely, temperature consistently shows weak negative partial correlations, suggesting a slight inverse effect on modal frequencies after controlling for other environmental factors. This is weaker than indicated by Pearson correlations, implying that much of the apparent relationship with temperature may be indirect or confounded by other predictors such as RH or EMC. The RH exhibits near-zero to mildly negative partial correlations across all modes (e.g., –0.0047 to –0.0915), despite having moderate Pearson and Spearman correlation coefficients. This suggests that the RH influence on the modal frequencies is largely redundant with other predictors (such as EMC and AH), and its independent contribution is minimal. The EMC is the only variable showing consistently positive and slightly stronger partial correlations, particularly with Mode 2 (0.1574). This indicates that EMC has the most meaningful independent effect among the predictors, possibly due to its direct relationship with material stiffness in timber. The AH, wind speed, and wind direction all yield negligible partial correlations. These results suggest that the available predictors do not significantly contribute to the variability in the building modal frequencies. It should be noted that the EMC values derived from RH and temperature calculations represent the moisture content of the air and not the specific equilibrium moisture content of the Limnologen building. This limitation may partially explain the observed weak correlations between EMC and the building modal frequencies.
Prediction of Modal Frequencies
The prediction process of the modal frequencies of the timber building begins by generating the training and testing datasets using the ratio of 70%-30%. The training data include the original environmental parameters and modal frequencies, while the testing data contain environmental factors, which have not been incorporated into modeling the DTR and GPR. As explained earlier, a separate regressor, i.e., DTR in Phase I and GPR in Phase II, is trained for the modal frequencies of each mode, in which one needs to develop three DTR and GPR models. Bayesian hyperparameter optimization is applied to tune the main hyperparameters of these regressors. For the DTR modeling, the major hyperparameters include the minimum number of observations per leaf node (NL), the minimum number of observations required at a node (NP), and the maximum number of splits (NS). For the GPR modeling, the key hyperparameters are the kernel function, kernel scale (i.e.,  and ), kernel length (l and h), and kernel shape parameter (α) for the rational quadratic kernel function. Tables 1 and 2 lists the tuned hyperparameters of the DTR and GPR models, respectively. Regarding the GPR model, it should be noted that various kernel functions and parameter configurations are available; however, since the Bayesian hyperparameter optimization in this study selected only the exponential and rational quadratic kernels as optimal, the results presented pertain only to these kernel functions.
Table 1. Results of Bayesian hyperparameter optimization of three DTR models
	Hyperparameters
	Mode 1
	Mode 2
	Mode 3

	NL
	38
	92
	62

	NP
	19
	46
	31

	NS
	6
	3
	4


Table 2. Results of Bayesian hyperparameter optimization of three GPR models
	Hyperparameter
	Mode 1
	Mode 2
	Mode 3

	Kernel function
	
	
	

	Kernel scale
	0.0510
	0.0090
	0.0005

	Kernel length
	230.73
	65.87
	112.57

	Kernel shape value
	-
	1
	1


The results of prediction of modal frequencies of the timber building during the training and testing stages are shown in Fig. 6 and Fig. 7, respectively. In the training stage (Fig. 6), the predicted responses (i.e., blue dots) align closely with the original responses (i.e., black circles) for all three modes. This conclusion demonstrates the high fitting capability of the proposed method and its robustness to weakly correlated data. The alignment between the predicted and actual frequencies indicates that the DTR-based residuals provide valuable latent information of the environmental factors, which enable the GPR to accurately model the complex relationships between the enhanced predictor and response data. In the testing stage (Fig. 7), where the DTRGP model predicts the building modal frequencies using the enhanced predictor data not included in the training process, the red asterisks (representing the predicted responses) show good alignment with the original response samples.
To better evaluate the performance of the proposed DTRGP method, Tables 3 and 4 list the values of the regression-based performance evaluation metrics (i.e., R², RMSE, MAE, and MAPE) in the DTR modeling by the original data (Phase I) and GPR modeling via the enhanced residual-augmented data (Phase II) during the training and testing stages, respectively. As presented in Table 3, the results from the training stage clearly demonstrate that the second phase (GPR modeling) significantly outperforms the first phase (DTR modeling) across all three modes. For instance, the R² values improve from 0.4314 to 0.9216 for Mode 1, from 0.2179 to 0.9355 for Mode 2, and from 0.2116 to an exceptional 0.9996 for Mode 3. These increases reflect a substantial enhancement in the prediction accuracy after incorporating residual information. Concurrently, the error metrics including RMSE, MAE, and MAPE sharply decrease in Phase II, with RMSE reducing by over 60% for all modes and MAPE dropping to as low as 0.0118 for Mode 3.
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[bookmark: _Ref197286592]Fig. 6. Prediction of the modal frequencies of the timber building via the proposed DTRGP method in the training stage: (a) mode 1, (b) mode 2, (c) mode 3
A similar trend is observed in the testing stage, as shown in Table 4. The proposed method maintains strong generalization performance, with R² values improving from 0.3741 to 0.8936 for Mode 1, 0.2024 to 0.9218 for Mode 2, and 0.1975 to 0.9720 for Mode 3 between Phase I and Phase II. These improvements confirm the robustness of the GPR model trained on residual-augmented data, even when there are weakly correlated predictor-response relationships. The corresponding reductions in RMSE, MAE, and MAPE further support this finding, indicating more accurate and stable predictions. Overall, these results validate the core hypothesis of this study, which residual learning significantly enhances regression performance and prediction accuracy under conditions of weakly correlated and limited data. The combination of DTR and residual-informed GPR within the DTRGP framework proves to be a powerful approach for predicting the dynamic behavior of timber buildings using limited and weakly correlated environmental information.
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[bookmark: _Ref197286593]Fig. 7. Prediction of the modal frequencies of the timber building via the proposed DTRGP method in the testing stage: (a) mode 1, (b) mode 2, (c) mode 3
Table 3. Performance evaluation of the proposed DTRGP method in the first (DTR modeling) and second (GPR modeling via residual-augmented data) phases in the training stage
	Metrics
	Mode 1
	Mode 2
	Mode 3

	
	Phase I
	Phase II
	Phase I
	Phase II
	Phase I
	Phase II

	R²
	0.4314
	0.9216
	0.2179
	0.9355
	0.2116
	0.9996

	RMSE
	0.0161
	0.0059
	0.0130
	0.0037
	0.0195
	0.0004

	MAE
	0.0120
	0.0046
	0.0101
	0.0029
	0.0143
	0.0003

	MAPE
	0.5592
	0.2137
	0.4507
	0.1294
	0.5858
	0.0118


Table 4. Performance evaluation of the proposed DTRGP method in the first (DTR modeling) and second (GPR modeling via residual-augmented data) phases in the training stage
	Metrics
	Mode 1
	Mode 2
	Mode 3

	
	Phase I
	Phase II
	Phase I
	Phase II
	Phase I
	Phase II

	R²
	0.3741
	0.8936
	0.2024
	0.9218
	0.1975
	0.9720

	RMSE
	0.0168
	0.0069
	0.0136
	0.0042
	0.0184
	0.0034

	MAE
	0.0132
	0.0055
	0.0102
	0.0031
	0.0151
	0.0023

	MAPE
	0.6143
	0.2564
	0.4570
	0.1391
	0.6192
	0.0954


Conclusions
This study proposes a novel hybrid regression method (i.e., DTRGP) to predict the modal frequencies of multi-story timber buildings under limited and weakly correlated data. The proposed method is designed to address a common challenge in field measurements in SHM programs and the major technical limitation of traditional regression models for prediction in the presence of weakly correlated predictor-response relationships. The DTRGP method integrates two phases: (i) the initial DTR modeling via the original data to capture baseline relationships and extract residuals representing latent information of the environmental parameters, and (ii) the enhanced GPR modeling using the residual-augmented data improve predictive accuracy.
The correlation analysis results demonstrate that the measured and available environmental parameters including temperature, RH, EMC, AH, wind speed, and wind direction are not sufficiently correlated with the modal frequencies of the three modes of the timber building. Such analyses not only confirm the necessity of the proposed DTRGP method but also highlight the importance of initial correlation assessment for applying the best regression model for prediction. The prediction results also indicate that the second-phase GPR modeling significantly outperforms the initial DTR modeling with considerable improvements in prediction accuracy (R²) and substantial reductions in the error metrics (RMSE, MAE, and MAPE). These findings highlight the potential of the proposed DTRGP method as a reliable predictive solution for SHM applications, especially under constraints of sparse and weakly informative environmental data.
The EMC values in this study were estimated based on air humidity and temperature measurements, which may not fully represent the building-specific equilibrium moisture content. Future studies should consider more direct methods of measuring environmental parameters, especially EMC, for investigating their impacts on dynamic behavior of the building.
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