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Dynamic Monitoring of Bridge Structures under Seasonal Temperature Variability by Reconstruction Error-based Density Clustering for Anomaly Detection
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Abstract. Long-term dynamic monitoring of bridge structures is essential for ensuring their safety and serviceability under varying environmental and operational conditions, particularly under seasonal temperature fluctuations. However, distinguishing true structural anomalies from such variability patterns remains a major challenge. This paper proposes a novel unsupervised learning framework, termed Reconstruction Error-based Density Clustering for Anomaly Detection (REDCAN). REDCAN combines a deep autoencoder with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to improve the robustness and accuracy of anomaly detection. In the first phase of the REDCAN framework, a deep autoencoder model is developed to reconstruct dynamic responses (modal frequencies), and the resulting reconstruction errors are extracted as normalized features. These reconstruction errors are then clustered using the DBSCAN algorithm, which identifies anomalies based on local density variations in the error space. To enable binary classification, the main hyperparameters of DBSCAN are tuned such that it forms two clusters: one corresponding to the normal condition and the other representing anomalies or damage. The algorithm outputs two labels, -1 and 1, where -1 denotes an anomaly or damaged state, and 1 indicates normal behavior. The major innovation of this study is the introduction of a new application of unsupervised clustering to anomaly detection. In this regard, the anomaly detection task is transformed into a density separation problem within reconstruction error space, enabling REDCAN to effectively leverage both the global reconstruction behavior and local density irregularities without relying on handcrafted thresholds or multiple decision layers. The proposed method is validated using the long-term modal frequency dataset of the Z24 bridge, which includes both normal and damaged structural states. Results demonstrate that REDCAN significantly enhances anomaly detection accuracy while maintaining low false alarm rates, even under complex environmental influences.
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Introduction
Long-term dynamic monitoring of civil structures is essential for ensuring their structural safety, operational functionality, and economic longevity. Among such structures, bridges are critical components that must withstand both gradual environmental changes and sudden operational anomalies over time. Modal frequencies, as fundamental dynamic characteristics, are highly sensitive indicators of structural changes and potential damage [1]. Hence, accurate and reliable monitoring of modal frequencies provides valuable insights into the health status of bridges [2, 3]. However, the variability of environmental and operational conditions often complicates the interpretation of long-term modal frequency data, masking the presence of genuine anomalies or damage-related patterns.
Despite significant advancements in Structural Health Monitoring (SHM) techniques, traditional finite element or physics-based approaches for damage detection face major challenges when applied to long-term monitoring programs. Moreover, the presence of severe environmental factors such as harsh freezing events, unpredictable operational conditions, and sensor malfunction can induce non-trivial fluctuations in modal frequencies, which are often not captured by physics-based solutions. While data-driven methods offer innovative alternatives for SHM of civil structures, the impacts of severe environmental and operational conditions still pose critical challenges related to false alarm or mis-detection errors [4-6]. False alarms may lead to unnecessary inspections, maintenance activities, or service disruptions, imposing additional costs and operational inefficiencies. Conversely, mis-detections, where actual damage is overlooked, pose significant risks to structural safety and public welfare, potentially resulting in catastrophic failures if timely interventions are not made. Therefore, minimizing these errors is essential to ensuring both the economic and safety objectives of SHM programs.
Recently, unsupervised learning-oriented anomaly detection methods have become the main solution for monitoring civil structures in an effort to detect any abnormal behavior. The main objective of this technique is to develop an anomaly detector using unlabeled data and then determine anomaly scores of available data for decision-making. In this context, one needs to estimate a threshold limit to discriminate between the damaged and undamaged conditions [3-8]. However, setting an appropriate threshold is challenging because it often requires additional calibration strategies, depends heavily on expert judgment, and is highly sensitive to environmental and operational variability. Improper threshold selection can either trigger excessive false alarms or overlook actual damages, compromising the reliability of the monitoring system. Therefore, threshold-based approaches pose a major limitation to achieving fully automated and adaptive SHM anomaly detection.
The other limitation is that single-model anomaly detection approaches may not always be promising and reliable for SHM under severe environmental variability. Each individual model typically captures only a limited aspect of the data characteristics, making it vulnerable to specific types of errors such as false alarms under environmental variability or missed detections when subtle damage indicators  are masked by noise. Moreover, a single model assumption such as distributional patterns, reconstruction capabilities, or density separability may not always hold under real-world conditions, especially in long-term monitoring with highly dynamic and nonlinear influences. To address these limitations, hybrid learning strategies have emerged as a powerful solution by combining the complementary strengths of different models [3]. Hybrid unsupervised learning frameworks integrate diverse unsupervised models. Such a multi-perspective approach can significantly improve anomaly detection accuracy, robustness, and adaptability, leading to more reliable decision-making for the health assessment of civil structures.
Therefore, this study proposes a novel unsupervised anomaly detection framework named Reconstruction Error-based Density Clustering for Anomaly Detection (REDCAN) for the long-term dynamic monitoring of bridge structures. The REDCAN method integrates deep learning-based reconstruction with density-based clustering to enhance the robustness and accuracy of anomaly detection under complex environmental and operational variability. In the first phase, a deep autoencoder model is developed and trained to reconstruct the dynamic response data, particularly modal frequencies, collected from bridge monitoring systems. The reconstruction errors produced by the autoencoder are extracted as normalized features that highlight deviations from normal structural behavior. In the second phase, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is applied directly to the reconstruction error space to identify structural anomalies. The DBSCAN parameters are carefully tuned to enforce binary classification, where one cluster corresponds to normal structural conditions and the other to anomalies or damage. The final output consists of two cluster labels, -1 and 1, representing anomalous and normal samples, respectively. 
The major innovation of REDCAN lies in transforming the anomaly detection task into a density-based separation problem within the reconstruction error domain, thereby avoiding the need for manually set thresholds or multi-layer decision fusion. To validate the effectiveness of the proposed approach, REDCAN is applied to the long-term modal frequency dataset of the Z24 bridge, a well-established benchmark in the SHM community, encompassing both undamaged and damaged structural states. Results demonstrate that REDCAN significantly improves anomaly detection performance while maintaining an extremely low false alarm rates, highlighting its potential for developing more intelligent, automated SHM solutions for real-world bridge structures. The major contributions of this research can be summarized as follows:
· A novel hybrid anomaly detection approach is developed by combining an autoencoder-based reconstruction error features with DBSCAN clustering, providing a robust mechanism for identifying structural anomalies.
· The proposed framework effectively transforms the anomaly detection task into a density-based clustering problem on the normalized reconstruction error space, addressing the limitations of relying solely on raw data clustering or traditional reconstruction thresholds.
· By leveraging the intrinsic density patterns of reconstruction errors, the method enhances detection reliability without the need for handcrafted meta-decision strategies or manual thresholding, even under highly variable environmental conditions.


Proposed REDCAN method
[bookmark: _Ref467509391]This section presents the developed unsupervised anomaly detection framework (REDCAN), designed for long-term dynamic monitoring of bridge structures. The proposed method consists of two main stages: 
(i) reconstruction-based feature normalization using a deep autoencoder, and 
(ii) density-based clustering using DBSCAN applied to the reconstruction error space for anomaly detection.
Let X∈ℜn×p and Z∈ℜm×p denote the training and testing datasets, respectively, where n and m represent the number of observations (time samples), and p is the number of measured vibration modes. These datasets consist of long-term modal frequency records that are highly influenced by environmental variability, particularly temperature. The central assumption is that environmental effects, especially seasonal freezing events, cause temporary yet significant increases in modal frequencies, which can obscure or mimic actual structural anomalies. The objective of the proposed REDCAN method is to eliminate the influence of environmental variability and isolate true structural anomalies, such as damage or degradation, by first encoding normal behavior via reconstruction, and then detecting abnormal conditions through topological clustering in the normalized error domain.
Autoencoder-Based Reconstruction Error
Autoencoders are a class of unsupervised neural networks designed to learn compressed representations of input data [9]. They consist of two main components: an encoder, which maps the input data into a lower-dimensional latent space, and a decoder, which reconstructs the input from this latent representation. The network is trained to minimize the difference between the original input and its reconstruction, typically using a mean squared error (MSE) loss function.
As the first phase of the proposed REDCAN method, an autoencoder is trained to reconstruct the training data X. The encoder fθ ​ maps each feature vector in X, i.e., xi, where i=1,…,n, into latent space hi in the following form:
	
	
	(1)


Using this latent representation, the autoencoder runs the decoder gφ to reconstruct the input data () as follows:
	
	
	(2)


For this procedure, the autoencoder minimizes the reconstruction loss using the MSE loss function:
	
	
	(3)


This strategy is carried out in a feedforward configuration. In this context, the training process of the autoencoder depends on the hidden layers of encoding and decoding as well as the neuron sizes of these layers. Inspired by Entezami et al. [12], the autoencoder composed of three hidden layers: the encoding (mapping), bottleneck, and decoding (de-mapping) layers with 10, 2, and 10 neurons, respectively. The complete architecture is illustrated in Fig. 1.
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Fig. 1. The architecture of the autoencoder for generating the reconstruction errors 

Using the trained autoencoder, each feature vector of the testing matrix is fed into this neural network as an input, i.e., zj, where j=1,…,m, to reconstruct it (). According to the original and reconstructed data from both the training and testing data sets, reconstruction errors are computed and used as the normalized data for the next phase of the proposed method: 
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Density-Based Clustering for Anomaly Detection
DBSCAN is an effective clustering algorithm for dividing data samples based on the concept of data density [10]. Unlike other clustering techniques, predefining the number of clusters is mandatory before performing data clustering, DBSCAN does not require specifying the number of clusters beforehand. Instead, it identifies clusters based on the local density of data points by defining a neighborhood around each point. Accordingly, this technique introduces two key hyperparameters govern the clustering process: 
(i) epsilon (ε), which specifies the neighborhood radius, and 
(ii) minPts, the minimum number of points required to form a dense region.
 During the algorithm, a core point is defined as a data point that has at least minPts neighbors within its ε neighborhood. Once a core point is identified, DBSCAN recursively expands the cluster by adding all reachable points within ε distance. The DBSCAN algorithm can detect clusters of arbitrary shapes and sizes in the dataset [10].
Although the DBSCAN is an unsupervised learning method for data clustering, this study innovatively utilizes it as an anomaly detector. The key idea is to enforce the formation of two clusters by carefully tuning the algorithm's hyperparameters, as explained in [11]. Under this configuration, the DBSCAN can allocate clustered labels -1 and 1 for data samples, where -1 indicates to an anomaly or damaged state, while 1 represents normal behavior. For this purpose, the reconstruction errors of the training and testing data, i.e.,  and , are collected into a matrix to generate a unique dataset. In order to increase the accuracy of anomaly detection, the minimum value of p columns of this matrix is extracted to make a vector of reconstruction errors R=[]. Unlike centroid-based clustering methods (e.g., k-means), DBSCAN identifies clusters based on point density rather than distance from a center, making it particularly effective for detecting irregular, non-Gaussian, or skewed patterns in reconstruction error distributions.
Given the reconstruction error dataset R, the DBSCAN clustering process needs ε-neighborhood of each point, which can be defined as follows:
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where k,l=1,…,(n+m). A point ​ is a core point if:
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Accordingly,  is directly density-reachable from  if  is a core point and . Moreover, a point  is density-reachable from  if there exists a chain of directly density-reachable points from  to . With these descriptions, the DBSCAN clustering algorithm divide the reconstructed errors into two clusters by grouping all density-connected points, while points not belonging to any cluster are labeled as noise, i.e., interpreted as anomalies in this study. Therefore, the anomaly detection rule based on the DBSCAN algorithm output is a label vector in the following form:
	
	
	(8)


where . 
Experimental Validation
This section utilizes the long-term modal frequencies of the Z24 Bridge to validate the capabilities and effectiveness of the proposed REDCAN method. In the SHM community, this structure is a well-known benchmark for verifying damage detection techniques under environmental variability. The Z24 bridge was located in the canton of Bern near Solothurn, Switzerland. It was part of the road connection between the villages of Koppigen and Utzenstorf, crossing over the A1 highway between Bern and Zürich. It was a classical post-tensioned concrete two-cell box-girder bridge with a main span of 30 m and two side spans of 14 meters, as shown in Fig. 2. The bridge was built as a freestanding frame with the approaches backfilled later. Both abutments consisted of triple concrete columns connected by concrete hinges to the girder. Both intermediate supports were concrete piers rigidly connected to the girder. An extension of the bridge girder at the approaches provided a sliding slab. All supports were rotated with respect to the longitudinal axis, which yielded a skew bridge. The bridge, which dated back to 1963, was demolished at the end of 1998 because a new railway adjacent to the highway required a new bridge with a larger side span.
[image: ]
[bookmark: _Ref196830860]Fig. 2. Front view (a), top view (b), and cross-section (c) of the Z24 Bridge
For the dynamic monitoring of the Z24 bridge conducted over a period of 12 months, one of the key environmental conditions that were measured was temperature. The measurements included air temperature and deck temperature, which provided valuable insights into the effect of temperature on the bridge's stiffness. In this regard, the Young’s modulus increased rapidly up to the temperatures above 0°C (i.e., freezing events), and then decreased more slowly or becomes constant at higher temperatures. On the other hand, various damage patterns were defined to simulate the occurrence of realistic damage in concrete bridges. Having considered the modal frequencies of the undamaged and damaged conditions,  Fig. 3 shows the time series evolution of these dynamic features for the four modes during the monitoring period of the Z24 bridge. As can be seen, the main reasons for changes in the modal frequencies of the undamaged state are related to the temperature variability, especially freezing events emerging as sharp increases around the observations 500 and 1500 [12].

[bookmark: _Ref196830843][image: ] Fig. 3. Time-series evolution of the modal frequencies of four modes 
[bookmark: _Ref196838577][image: ] Fig. 4. Reconstruction errors of the modal frequencies of the Z24 bridge derived from the autoencoder

The total modal frequencies of the bridge, comprising 3932 samples are divided into the training (X) and testing (Z) matrices with a 90%-10% split. In this case, the number of training samples corresponds to 3127. Moreover, the testing matrix also comprises the frequencies of both the undamaged and damaged states, where the undamaged instances in Z serve as the validation data. Using the training matrix, a deep autoencoder is developed, consisting of three hidden layers with 10, 2, and 10 neurons, to determine the reconstruction error R.  Fig. 4 illustrates the evolution of the reconstruction errors of the training, validation, and testing (damaged) samples. As can be observed, the sudden jumps in the training level are related to the temperature variability impact, which still persists in the output of the autoencoder-based feature normalization. 
[bookmark: _Ref196838842][image: ] Fig. 5. Anomaly detection via DBSCAN
The reconstruction error R is now applied to the DBSCAN to cluster it into two groups. The optimal choices for the epsilon (ε) and minPts are set to 0.1403 and 80, respectively.  Fig. 5 indicates the result of anomaly detection via the DBSCAN for the dynamic monitoring of the Z24 bridge. From this figure, one can discern that the proposed REDCAN method could correctly detect the undamaged and damaged states without any mis-detection or false negative error. For the undamaged samples, there are only three false alarms, resulting in a false positive rate of less than 0.1%. 
Conclusions
This study proposed a novel unsupervised learning framework (REDCAN) for the long-term dynamic monitoring of bridge structures. The REDCAN method integrates two complementary stages of reconstruction-based feature normalization using a deep autoencoder, and density-based clustering of the reconstruction errors using the DBSCAN algorithm. By transforming the anomaly detection task into a density separation problem within the reconstruction error space, REDCAN overcomes the limitations of traditional threshold-based methods and single-model strategies, and effectively captures both global reconstruction behaviors and local density irregularities without relying on manual threshold tuning or multi-layer decision fusion.
Based on the results obtained from the long-term modal frequency dataset of the Z24 bridge, the following findings can be drawn:
1. While the deep autoencoder could mitigate the impact of the severe temperature variability, observed in the bridge’s modal frequencies, the reconstruction errors still reflect early signs of temperature changes as sudden increases. Moreover, the reconstruction errors of the damaged state closely resemble those of the undamaged condition. 
2. The DBSCAN algorithm, when applied to the reconstruction errors, effectively clusters the data into two distinct groups representing normal and damaged conditions without requiring the number of clusters to be pre-specified.
3. By tuning DBSCAN hyperparameters to enforce binary classification, the REDCAN method consistently achieves extremely low false alarm rates (less than 0.1%) and complete damage detection without any mis-detections.
4. The experimental validation confirms that REDCAN can robustly distinguish between genuine structural anomalies and environmental variability effects, such as sharp frequency increases caused by freezing events.
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