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Abstract. Ensuring the safety and integrity of bridge structures requires effective damage detection methods, which should be capable of handling real-world uncertainties in monitoring data. In particular, modal frequency data obtained from vibration-based monitoring are often affected by irregularities and outliers that can compromise the reliability of damage detection. This study presents a novel unsupervised hybrid anomaly detection method tailored for vibration datasets with high levels of outlier contamination. The proposed approach combines an autoencoder-based reconstruction neural network with a local outlier factor (LOF) model to enhance the robustness and accuracy of structural condition assessment. In the first phase, the autoencoder is trained exclusively on undamaged-state frequency data to learn their latent representation. Reconstruction errors are then quantified and compressed into a univariate feature vector. In the second phase, the LOF algorithm is applied to this compressed feature space, where deviations from normal patterns are detected as potential indicators of damage. This two-stage framework effectively suppresses spurious variability while highlighting structural anomalies. Validation on modal frequency data of a real-world post-tensioned concrete bridge subjected to realistic settlement at one of its piers demonstrates that the proposed method can properly distinguish the bridge damage condition from its normal behavior, thereby significantly enhancing decision-making reliability in the presence of outlier-contaminated vibration data.
Keywords: Damage Detection, Bridge, Outlier, Modal Frequency, Unsupervised Learning, Autoencoder, Local Outlier Factor.
Introduction
Damage detection in civil structures within the category of structural health monitoring (SHM) is a fundamental aspect of modern infrastructure management, which make sure of the integrity and functionality of such assets. As civil structures are subjected to various predictable and unpredictable loads and environmental changes, their health and integrity may be threatened by different damage patterns or even partial or global failure modes. In contrast to traditional inspection techniques, which rely on visual and manual assessment by experts, recently progressed damage detection solutions benefit from advanced sensing technologies and data-driven algorithms to identify structural vulnerabilities and damage patterns [1,2]. These solutions mainly lie in capturing changes in structural responses, i.e., such as shifts in modal frequencies, deformations, and vibration patterns, to detect anomalies that may indicate underlying damage [3]. 
Vibration-based damage detection has emerged as one of the most effective methodologies for assessing the health of civil structures. The core principle is based on the understanding that damage in a structure can change stiffness of that structure, which in turn affects its dynamic properties [4]. In particular, as modal frequencies are highly sensitive to structural changes, these are effective vibration features for damage detection in civil structures. The direct use of measured modal frequencies for damage detection highlights the capabilities of data-driven machine learning solutions [5]. In this context, unsupervised anomaly detection represents a breakthrough in the field of damage detection by eliminating the need for labeled data during the learning process [6-9]. 
Unlike supervised classification techniques, which require predefined labels for the training features associated with damaged and undamaged states [10], unsupervised methods autonomously discover structural anomalies using intrinsic properties and distribution of unlabeled features related to undamaged structural states to identify deviations from normal behavior. This independence from labeled datasets is particularly advantageous in civil engineering applications, where acquiring damage-labeled data is both costly and often impractical [11]. Anomaly detection is the main unsupervised learning approach to damage detection. Using the training features concerning the normal structural state, an anomaly detector is trained. When new features are applied to this trained detector, it can detect normal and abnormal events [12].  
Although the choice of an appropriate anomaly detector depends on various factors such as the duration of the monitoring program, the number of samples, and the type of features, achieving reliable anomaly detection remains challenging when the features are contaminated with outliers [13,14]. In the context of SHM, environmental noise, sensor errors, temporary load changes, and inaccurate methodology assumptions can introduce significant outliers into the data. These assumptions may include improper parameter settings, algorithmic configurations, and unrealistic modeling. When such outliers are present, they can distort the learned representation of the normal structural state and compromise the reliability of the developed models. Therefore, the anomaly detection process becomes prone to false alarms and missed detections, reducing its effectiveness in identifying actual structural damage.
To address the challenge of outlier-contaminated vibration data for damage detection in civil structures, this paper proposes an unsupervised anomaly detection method. This method consists of two phases of feature reconstruction/compression and anomaly detection. In the first phase, an autoencoder is trained on modal frequency data associated with the undamaged state of the structure to learn its latent representation. The autoencoder compresses vibration features into a compact latent space and reconstructs them back to their original form. The reconstruction errors, representing the difference between the original and reconstructed data, are quantified using the Euclidean norm to generate a univariate feature vector. This norm-based representation serves as the main input for anomaly detection. In the second phase, the local outlier factor (LOF) algorithm is applied to the norm-based feature vector to identify structural anomalies. By evaluating the local density of each test sample relative to its neighbors in the normal condition dataset, LOF detects outliers that deviate from the expected structural behavior. The proposed method is then validated by a real-world concrete bridge with a realistic damage case. Results indicate that the proposed method can significantly enhance damage detection by reducing the rates of false alarm and mis-detection errors. 
Proposed Unsupervised Damage Detection Method
Feature Reconstruction and Compression
The first phase of the proposed unsupervised learning method for damage detection involves an autoencoder-based feature reconstruction and compression of the available modal frequencies. An autoencoder is a type of neural network used for unsupervised learning, where its primary objective is to learn an efficient, compressed representation of the input data and then reconstruct it as closely as possible to the original input. The encoder transforms the input data into a lower-dimensional latent representation by applying a series of nonlinear transformations. This process captures the essential features of the data while filtering out noise, outliers, and redundancy, which can effectively compress the original input data into a more compact form. In contrast, the decoder maps this compressed latent representation back to the original input space through a series of inverse transformations. The goal of the decoder is to reconstruct the input data as accurately as possible from the latent features learned during encoding [15].
Given the training dataset , where n represents the number of training samples of frequency data and p denotes the number of vibration modes, the primary objective is to train an autoencoder to reconstruct both the training and test datasets and subsequently compute their norm values. These norm values serve as a univariate compressed representation of the structural states, which can capture the residual discrepancies between the original and reconstructed data points. The encoder maps the input training data X to a lower-dimensional latent representation , where q is the dimension of the latent space (typically q<p). The transformation is expressed as:
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where  and  represent the weight matrix and bias vector of the encoder; and σ(.) is the activation function (e.g., ReLU or sigmoid) for the encoding process of the autoencoder. Subsequently. the decoder attempts to reconstruct the original input data from the latent representation H by applying a transformation back to the original space in the following form:
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where  and  are the weight matrix and bias vector of the decoder; ϕ(.) stands for the decoder activation function; and  denotes the reconstructed version of the input data X. Using the original and reconstructed training data, one can extract the residual data of the training phase as follows:
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Given the trained autoencoder, it is also feasible to reconstruct the test data , where m denotes the number of test samples considered in the testing or monitoring phase. Using the weight matrices and bias vectors of the encoder and decoder, the test data can be reconstructed following the same transformations applied during the training phase, resulting in the reconstructed matrix . Accordingly, the residual data for the testing phase is defined as follows:
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The residuals represent the difference between the original data and the reconstructed data. To generate unique compact features for the next stage of the proposed method, the norm values of the residual matrices are computed to obtain norm-style feature vectors  and  derived from the training and testing phases, respectively. Accordingly, one can determine the norm-based feature vectors as  and , where Nx(i) and Nz(l) are the Euclidean norm values of the ith and lth row vectors of Rx and Rz; and i=1,…,n and l=1,…,m. Thus, the vectors Nx and Nz serve as the main outputs of the autoencoder-based feature reconstruction and compression stage. 
LOF-Based Anomaly Detection
The next stage of the proposed method focuses on anomaly detection through the application of the LOF approach. It is an unsupervised learning method that evaluates the local density deviation of a given data point with respect to its neighbors [5]. In the context of this study, the norm-based feature vector derived from the autoencoder, denoted as Nx, is used as the input for training the LOF-oriented anomaly detector. 
The key concept behind LOF is the local density comparison. For each data point Nx(i), LOF assesses its density relative to its neighbors, identifying points that are significantly less dense than their surrounding regions as outliers. The local density is determined using the k-nearest neighbors (k-NN) approach, where the distance to its kth nearest neighbor is first computed:
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where Nx(i) and Nx(j) are the norm values of the ith and jth samples of the norm-based feature vector Nx, and dk(Nx(i) – Nx(j)) denote the Euclidean distance to the kth nearest neighbor of Nx(i). From this, the reachability distance is defined as the maximum of the distance to the kth nearest neighbor and the direct distance to the point itself:
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The reachability distance ensures that all points within the local neighborhood are accounted for, even if they are closely packed. Using the reachability distances, the local reachability density of a point is computed as the inverse of the average reachability distance to its k nearest neighbors:
	
	
	(7)


where  is the set of k nearest neighbors of Nx(i), and NN denotes the number of samples in this set. Finally, the LOF score is determined by comparing the local density of a point to the average local densities of its neighbors:
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In the testing or monitoring phase, the norm-based feature vector of the test data, Nz, is evaluated using LOF algorithm. In this regard, LOF evaluates the local density of each test sample with respect to its nearest neighbors in the training data Nx. The process begins by calculating the distance between each test sample in Nz ​and its nearest neighbors in Nx, in which case Nz(l) should be replaced with Nx(i) in Eq. (6). The reachability distance for each test sample in Nz​ is then determined by finding the maximum of the distance to its nearest neighbors in the training data. In this context, the term Nx(j) remains unchanged, while the reference sample becomes Nz(l) instead of Nx(i). Consequently, the local reachability density is computed for each test sample by averaging the reachability distances to its neighbors in Nx, where the summation terms and neighborhood definitions are adapted to include the test sample Nz(l) instead of a training sample. The LOF score for each test sample is finally calculated similarly, by comparing its local reachability density to the corresponding values of its neighbors, which are exclusively drawn from the training vector.
To enhance anomaly detection reliability, a threshold value is defined based on the distribution of LOF scores in the training phase. Points with LOF scores exceeding this threshold are classified as potential anomalies (damage), otherwise, those are indicative of the normal state of the structure. 
Application
The case study for validating the proposed method is a post-tensioned concrete bridge called the S101 Overpass Bridge [16]. This structure was located in Reibersdorf, on the western outskirts of Vienna, Austria. Fig. 1 shows a real view of this structure. The main dimensions of the S101 Bridge include a main span of 32 m, two side span of 12 m, and a total width of 6 m. The bridge deck was designed as a continuous element that extended seamlessly over the piers and was integrated into the abutments, reflecting a robust structural design. Built in 1960, the bridge remained structurally sound until it was scheduled for demolition in 2008 to facilitate the expansion of the highway with an additional lane. Before its planned demolition, a two-day vibration measurement campaign was conducted on December 10–11, 2008. On the first day of the campaign, an ambient vibration test was performed to measure acceleration time histories from the accelerometers installed on the deck. The major source of excitation during this test was the traffic passing underneath the structure, providing continuous dynamic loading that enabled the identification of the bridge modal frequencies and mode shapes. 
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[bookmark: _Ref197962227]Fig. 1. View of the S101 Bridge
For the second day of the campaign, realistic damage patterns were considered at the bottom of one of the bridge piers as shown in Fig. 1. The damage was inflicted by making a cut in the pier just above the footing level. This incision was executed twice, with each cut measuring approximately 5 cm in thickness. During the cutting operation, a steel column was positioned parallel to the pier and secured to it using steel rods. This steel column acted as a temporary support, with its stability monitored and adjusted via a hydraulic jack located at its base. The settlement of the pier commenced when the pressure within the hydraulic jack was released. Therefore, the temporary steel column experienced a settlement of approximately 1 cm, which was immediately followed by a corresponding 1 cm vertical settlement of the pier. 
Results and Discussions
Using the acceleration responses of the undamaged and damaged states of the bridge structure, an operational modal analysis based on frequency domain decomposition (FDD) is applied to identify the bridge modal frequencies. Building on this, one can identify four stable modes of modal frequencies as illustrated in Fig. 2. As can be seen, there are considerable frequency shifts in the undamaged state. While the occurrence of damage in the bridge reduces the magnitude of the modal frequencies of the damaged state, some frequency shifts are also available in the damaged samples. Therefore, the proposed method is applied to enhance damage detection in the S101 Bridge using such outlier-contaminated modal frequencies.
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[bookmark: _Ref197962879]Fig. 2. Modal frequencies of the S101 Bridge identified by the FDD technique: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4
Initially, the frequency data corresponding to the undamaged condition are split into training and validation datasets with an 80%-20% ratio. As a result, the initial input data (X) consists of 1702 frequency samples (n=1702) across four modes (p=4), which are fed into the autoencoder. The remaining 20% of the undamaged frequency data, amounting to 426 samples, are reserved as validation points serving as known test instances. In contrast, all 280 frequency samples associated with the damaged condition are considered unknown test instances. These known and unknown test samples are combined to form the final test dataset (Z), which includes a total of 726 frequency samples (m=726) across four modes.
Bayesian hyperparameter optimization, guided by an objective function based on the mean-squared error (MSE) between the original and reconstructed input data, is employed to fine-tune the main hyperparameters of the autoencoder. These optimized parameters include a hidden layer size of 88 neurons and a regularization coefficient of 0.0025. Additionally, the autoencoder is configured with 500 epochs, a sigmoid activation function for the encoder, and a linear transfer function for the decoder. Accordingly, the outputs of the autoencoder-aided feature reconstruction/compression consist of the norm-based feature vectors Nx and Nz. These vectors are applied to the LOF method for final anomaly detection. 
To identify the optimal number of nearest neighbors (k) for the LOF algorithm, various percentages of the total training dataset, ranging from 1% to 20%, are evaluated systematically. This range is selected to capture a broad spectrum of neighborhood sizes, which ensure that both local and more distributed relationships within the data are considered. During this process, the original training data is further split into new training and validation subsets, maintaining the same ratio. The LOF method is then applied across different values of k to assess its performance in terms of minimizing false alarm errors. The configuration with the lowest false alarm rate is selected as the optimal choice. Based on this analysis, the optimal number of nearest neighbors corresponds to 3% of the total training samples leading to k=51.
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[bookmark: _Ref197988457]Fig. 3. Damage detection of the S101 Bridge using the proposed method
The results of the unsupervised damage detection for the S101 Bridge are illustrated in Fig. 3, where the horizontal line represents the threshold limit, estimated using the 90th percentile of the LOF scores obtained from 1702 training samples. As observed, all LOF scores corresponding to the training instances lie below this threshold, accurately signifying the normal state of the bridge. Furthermore, the majority of the LOF scores for the validation samples also fall beneath the threshold, with only two instances exceeding the limit, indicating a minimal false alarm rate. This outcome confirms the effectiveness of the proposed method in reliably identifying the bridge undamaged state. In contrast, all LOF scores for the damaged condition are distinctly above the threshold, with no instances of mis-detection (false negative), signifying the method robustness in detecting damage. Notably, when compared to the original modal frequencies shown in Fig. 2, where the frequency magnitudes of some damaged instances overlap with those of the undamaged state, it is evident that the proposed method significantly enhances damage detectability. This improvement is demonstrated by the clear separation of LOF scores between the damaged and undamaged states, providing a more distinguishable and reliable damage identification.
To better demonstrate the effectiveness of the proposed method and the positive impact of LOF-based anomaly detection, Fig. 4 presents the damage detection results using the norm values of the residuals from both the training and testing datasets (i.e., Nx and Nz). This comparison is intended to highlight the added value of integrating LOF into the anomaly detection process. As observed, although the residual norms of the damaged state exceed the threshold limit, i.e., determined by the 90th percentile of the training norm values, the direct use of the autoencoder for anomaly detection, without incorporating the LOF algorithm, significantly increases the false alarm rate. This outcome emphasizes that the LOF-based anomaly detection acts as a crucial enhancement, effectively filtering out false positives that would otherwise be misclassified as anomalies. By applying a local density-based approach, LOF refines the decision boundaries, making the separation between normal and damaged states more distinguishable. Thus, the integration of LOF not only improves the accuracy of damage detection but also enhances the robustness of the method against false alarms, leading to more reliable and interpretable anomaly detection.
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[bookmark: _Ref197992325]Fig. 4. Damage detection of the S101 Bridge using the residual norms of the autoencoder
Conclusions
This study proposes an unsupervised damage detection framework using the combination of the autoencoder neural network and the LOF algorithm. In this approach, the autoencoder is employed to learn a compressed representation of the frequency data of the undamaged structure, enabling effective reconstruction of normal states. To enhance anomaly detection, the LOF algorithm is integrated to evaluate the local density of the reconstructed samples, identifying deviations that signify potential damage. A real-world bridge with a realistic damage pattern is applied to verify the proposed method.
The results demonstrate the reliability and accuracy of the proposed method in detecting structural damage. Specifically, the LOF-based anomaly detection effectively separated the damaged state from the undamaged state, as reflected in the distinct LOF scores that exceeded the threshold limit for damaged instances while maintaining low false alarm rates for undamaged ones. Compared to the direct use of residual norms from the autoencoder, the integration of LOF substantially reduced false positives, confirming its value in refining decision boundaries. Furthermore, the method's ability to detect damage even when modal frequency variations overlapped with the undamaged condition underscores its robustness and reliability. Overall, the combined use of the autoencoder and LOF not only enhanced anomaly detection accuracy but also provided a clear and interpretable separation between normal and damaged structural states, validating its effectiveness for SHM applications.
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