2
3
Hybrid Clustering-Based Anomaly Detection for Damage Detection in Civil Structures Subjected to Environmental Changes
Mohammad Omidi Mamaghani1,2, Alireza Entezami2, Alberto Corigliano2

[bookmark: OLE_LINK1]1 Department of Thermal and Fluid Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
2 Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy 
m.omidi@utwente.nl

Abstract. Environmental changes are inevitable parts of long-term structural health monitoring (SHM). For vibration-based damage detection of civil structures using modal frequencies, these changes significantly impact the accuracy of SHM. This paper proposes an unsupervised anomaly detection framework based on a hybrid clustering mechanism. In this first stage, Gaussian mixture model (GMM) is employed to identify the underlying probability distributions of the modal frequency data and segment them into initial clusters. Accordingly, the centroids derived from GMM serve as the main outputs for the next clustering framework. In this case, the second stage leverages k-means clustering (KMC) by employing the GMM-extracted centroids as the initialization points. This stage optimizes the initial centroids by reducing intra-cluster variance, which allows KMC to produce well-defined and statistically robust clusters without the need for additional heuristic methods to determine the number of clusters. The output centroids from KMC form the basis for a clustering-aided damage indicator (CDI), which quantifies the deviation of each modal frequency sample from its associated KMC-extracted centroid. During the anomaly detection phase, the CDI values of new samples are calculated and compared against a threshold estimated using the Generalized extreme value (GEV) model. This statistical approach effectively distinguishes between environmental variability and structural anomalies, enabling accurate and robust damage detection. Long-term modal frequencies of a full-scale concrete bridge are used to verify the proposed method. Results show that this method can significantly mitigate the impacts of environmental variability and yield reliable damage detection.
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Introduction
Structural health monitoring (SHM) is a critical practice for ensuring the integrity and functionality of civil structures in modern societies. This process generally involves the continuous or periodic assessment of structural conditions by measuring structural responses, environmental factors, and operational loads [1]. Effective SHM not only improves safety by identifying critical issues before they lead to catastrophic failure but also extends the service life of structures through early intervention and maintenance. Modern SHM systems utilize various sensors to record sufficient data for increasing the reliability of structural assessment [2]. On this basis, the analysis of such data or features extracted from them allows civil engineers to recognize changes in structural behavior and warn of the occurrence of anomalies (i.e., damage) and changes (e.g., retrofit, excessive loadings, etc.).
Damage detection is a fundamental aspect of SHM that focuses on alarming the occurrence of damage in a civil structure. In this context, the ability to detect damage at its incipient stage allows engineers to implement maintenance strategies before the damage progresses to critical levels, thereby avoiding costly repairs and extending the lifespan of the structure. Due to recent progress in sensor technologies and data analysis tools (i.e., techniques and software), data-driven damage detection has become a practical solution for evaluating the current status of civil structures [3], particularly bridges [4,5]. This methodology is based on recording structural responses, particularly vibration data such as acceleration time histories, and extracting structural features from such responses. The central core of this methodology lies in unsupervised learning and the concept of anomaly detection [6]. 
Unsupervised learning is a branch of machine learning that aims to develop models that are not dependent on labeled data. Unsupervised learning models are established through the analysis of unlabeled data, discovering intrinsic patterns, structures, and anomalies within the dataset without prior knowledge of the outcomes. This characteristic makes unsupervised learning particularly suitable for damage detection in civil structures, where obtaining labeled datasets of damaged states is often impractical or impossible. In the context of SHM, unsupervised learning techniques are often employed for data clustering [7], dimensionality reduction [8], and anomaly detection   [9]. Among these applications, anomaly detection is directly concerned with the problem of damage detection. Unsupervised anomaly detection represents a data-driven solution that relies on constructing anomaly detectors solely from unlabeled data representing the normal operational state of the civil structure under monitoring. These detectors learn the typical patterns and distributions of the structural responses under normal conditions. When deviations from this learned behavior occur, they are flagged as anomalies, potentially indicating damage.
Despite development of various unsupervised anomaly detectors for early damage detection in the SHM framework [10-14], some critical challenges impact the reliability and effectiveness of these solutions. In real-world SHM, especially long-term programs, environmental changes are inevitable [15-17]. In this regard, daily and seasonal temperature fluctuations, humidity variations, wind flows, etc., can alter structural material properties, physical characteristics,  and structural responses. An important issue is that these changes often mimic the characteristics of structural damage, making it challenging to distinguish between environmental effects and genuine structural anomalies. Although unsupervised learning can resolve this challenge through the methodology of data normalization, some solutions are complicated and computationally intensive. This necessitates the development of more efficient unsupervised anomaly detection for enhancing SHM and increasing the reliability of damage detection.
Therefore, this paper introduces a hybrid clustering-based anomaly detection (HCAD) method to improve damage detection in civil structures subjected to severe environmental changes. This method integrates two different clustering mechanisms. In this first stage, a Gaussian mixture model (GMM) is employed to segment dynamic features (i.e., modal frequencies) into preliminary clusters. The centroids obtained from GMM represent the primary outputs for the subsequent clustering stage. In the second phase, these GMM-derived centroids are utilized as initialization points for k-means Clustering (KMC). This approach refines the cluster boundaries by minimizing intra-cluster variance, allowing KMC to generate well-defined and statistically robust clusters. Notably, the number of clusters in the second stage is inherently determined during the GMM-based pre-clustering stage, which eliminates the need for additional cluster number selections. The final centroids extracted from KMC are used to develop a clustering-aided damage indicator (CDI), which quantifies the deviation of each modal frequency sample from its associated centroid. During the proposed anomaly detection, the CDI values of new samples are evaluated against a threshold established using the Generalized extreme value (GEV) model. The proposed framework is validated through long-term monitoring data from a full-scale concrete bridge, demonstrating its capability to suppress environmental changes and accurately identify structural damage. Results confirm that HCAD significantly mitigates the influence of environmental variability and provide a reliable solution for damage detection.
Proposed HCAD Method
GMM-Based Pre-Clustering 
In machine learning, GMM is a probabilistic model that represents a dataset as a combination of multiple Gaussian distributions, each of which captures a subset of the data characteristics [18: Chapter 7.1]. Building on this, GMM offers a probabilistic data segmentation approach where each data point is assigned a membership probability for belonging to each Gaussian component, rather than being rigidly classified into a single cluster. This soft clustering mechanism allows GMM to model overlapping regions and complex data distributions more effectively than traditional hard clustering methods. With such benefits, the first stage of the proposed method is GMM pre-clustering. This step aims to identify the underlying probability distributions of the modal frequency data and segment the dataset into soft clusters. Unlike hard clustering techniques, GMM provides a probabilistic approach, where each data point is assigned a membership probability for each cluster, allowing overlapping and mixed memberships.
GMM models the probability distribution of the dataset , where n is the number of frequency samples in the training phase and p is the number of vibration modes. The data is assumed to be generated from a mixture of multiple Gaussian distributions, mathematically represented as:
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where nc denotes the number of mixture components (clusters) of GMM, which will be equivalent with the number of pre-defined clusters in the KMC-enhanced clustering; πj is the mixture weight of the jth component, satisfying =1; mj and Sj refer to the mean vector and covariance matrix for the jth component, respectively. In this regard, πj, mj and Sj are the unknown model-parameters of GMM, which are estimated by using the Expectation-Maximization (EM) algorithm.
This algorithm presents an iterative approach that optimizes the likelihood of the observed data under the current parameter estimates. The EM algorithm operates in two main steps; that is, the expectation (E-step) and the maximization (M-step) [18: Chapter 7.1]. In the E-step, the algorithm calculates the posterior probabilities, also known as responsibilities, for each data point belonging to each Gaussian component. These responsibilities are defined as: 
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where γij represents the probability that sample xi​ is assigned to the jth component. This soft assignment allows each data point to belong to multiple clusters with varying degrees of membership, which improves the resolution of cluster boundaries.
In the M-step, the parameters of the Gaussian components are updated based on the computed responsibilities. The mean vectors are updated as the weighted average of the data points:
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Moreover, the covariance matrices are updated to reflect the spread of the data within each cluster:
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The mixture coefficients are also recalculated to represent the relative size of each cluster:
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The EM algorithm iterates between the E-step and the M-step until the log-likelihood of the data converges to a stable value, indicating that the parameter estimates have reached an optimal configuration. This iterative refinement enables GMM to accurately model overlapping regions and non-linear boundaries, which are often present in modal frequency variations influenced by environmental conditions. The output of GMM pre-clustering consists of γij , mj, Sj, and πj. Among them, the proposed HCAD method utilizes the only the mean vector of the GMM components as the initial centroids for the KMC-enhanced clustering framework. It should be noted that the number of components or clusters (nc) is the only hyperparameter of GMM [19]. For this issue, Gap statistic is applied to determine this hyperparameter.
KMC-Enhanced Clustering
In machine learning, KMC is a popular unsupervised learning algorithm that partitions a dataset into a predefined number of clusters by minimizing the distance between data points and their nearest cluster centroids [18: Chapter 14.1]. Due to some advantages such as simplicity and efficiency, scalability, and quick convergence, the second stage of the proposed HCAD method leverages this clustering technique. Building on this, once GMM pre-clustering is complete, the next stage is KMC-enhanced clustering. This step aims to fine-tune the centroids identified during the GMM stage by reducing variance and optimizing cluster boundaries. In this case, the mean vector of the GMM clusters serves as the initial centroids. This initialization is particularly beneficial as it provides statistically driven starting points, avoiding the randomness typically associated with standard KMC initialization. The centroids generated by GMM represent the underlying Gaussian distributions, thereby enabling KMC to converge more efficiently and with better-defined cluster boundaries. Furthermore, KMC recalibrates these centroids through iterative minimization of the within-cluster variance, leading to more distinct clusters.
On the other hand, as the initial centroids for KMC originate from GMM-based pre-clustering, it is not necessary to determine the number of clusters of KMC via any additional technique. This advantage simplifies the overall clustering process, as the number of components in GMM directly defines the number of clusters for KMC. This step reduces computational overhead and eliminates the need for cross-validation or heuristic methods [20] to find the optimal number of clusters. Thus, the combined GMM-KMC process is both computationally efficient and robust against initialization sensitivity.
The optimization problem in K-means is mathematically formulated to minimize the sum of squared Euclidean distances between each data point and its assigned centroid. Given the dataset , the objective function for KMC is defined as [18: Chapter 14.1]:
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where xi represents the ith sample of the training dataset X; ck is the centroid of the kth cluster; and nc denotes the number of the clusters pre-determined by the Gap statistic in the GMM-based pre-clustering stage. The KMC-enhanced clustering algorithm comprises three main steps of initialization, assignment, and update. During the initialization phase, the centroids derived from the GMM pre-clustering are used as the starting points for KMC. This initialization significantly accelerates convergence, as the centroids are already positioned close to the density peaks of the data distribution. In the assignment step, each data sample xi is allocated to the nearest centroid based on the Euclidean distance. This is expressed mathematically as follows:
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where Rk represents the collection of samples assigned to the kth cluster. This step groups each sample with its closest centroid, forming distinct clusters that reflect the underlying structural behavior. After all samples are assigned, the KMC algorithm proceeds to the update step, where the centroids are recalculated as the mean of all samples within each cluster:
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where rc denotes the number of samples within the kth cluster. On this basis, the centroids are shifted towards the geometric center of their assigned samples, which can reduce the average intra-cluster variance. The nc refined centroids {}, are the final output of the KMC-enhanced clustering stage, which can represent the local density of the data points. Thus, these centroids are used as the main elements for developing the CDI for anomaly detection.

Clustering-Based Damage Indicator
The CDI quantifies the deviation of each modal frequency sample from its associated cluster centroid, which represents the baseline of normal structural behavior obtained from the KMC-enhanced clustering phase. In this regard, the centroids obtained during the KMC-enhanced clustering stage serve as the reference points for measuring anomalies in the modal frequency samples of civil structures. 
The computations for CDI are implemented in training and testing phases. During the training phase, the training samples of the modal frequencies in X are applied to calculate their distances and then estimate a threshold limit. For any test sample of the modal frequency in the testing phase, z, its CDI value is compared with the estimated threshold limit for decision-making. The CDIs of the training and testing phases are defined as:
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where zj denotes the jth test sample and j=1,…,m, in which m is the number of test samples. Having considered the n samples of the modal frequencies related to the normal structural state in the training phase, the threshold limit is estimated by the extreme value theory (EVT) [21] and generalized extreme value (GEV) model. For this purpose, the block maxima technique is considered to determine the optimal number of blocks for extracting the maximum values from GEV modeling [19]. 
Given the estimated threshold limit, it is supposed that the CDI values of the training samples do not exceed this limit, correctly implying the normal structural state. For the testing phase, if the CDI of the test sample of interest is over the threshold, it means that the civil structure suffered from damage; otherwise, it declares the normal state of the structure similar to the training phase.
Real-World Verification
This section employs the long-term modal frequencies of a three-span concrete bridge called the Z24 Bridge to verify the effectiveness and accuracy of the proposed HCAD method. This structure, located in the canton of Bern near Solothurn, Switzerland, served as a connection between Koppigen and Utzenstorf, spanning the A1 highway between Bern and Zürich [23]. Constructed in 1963, it featured a post-tensioned concrete two-cell box-girder design with a main span of 30 meters and two side spans of 14 meters each. Fig. 1 shows the side view and the main dimensions of the Z24 Bridge. The structure included freestanding frames with backfilled approaches, triple-column abutments connected by concrete hinges, and intermediate concrete piers clamped to the girder. The bridge was skewed due to the rotational placement of its supports along the longitudinal axis. In 1998, it was demolished to make way for a new railway crossing requiring larger side spans. 
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[bookmark: _Ref197861288]Fig. 1. The three-span concrete bridge (i.e., the Z24 Bridge)
A continuous dynamic monitoring campaign was conducted to study the bridge response to environmental conditions, with a particular focus on temperature. Both air and deck temperatures were recorded to evaluate their impact on the bridge stiffness. It was observed that the Young's modulus of the concrete increased rapidly during freezing events (temperatures below 0°C) and then stabilized or decreased more gradually at higher temperatures [23]. To assess structural integrity, controlled damage scenarios were introduced to simulate realistic failures in concrete bridges. The long-term modal frequencies were identified by an operational modal analysis based on stochastic subspace identification. Fig. 2 shows the time series evolution of these dynamic features for the four modes during the monitoring period of the Z24 bridge. The analysis of the modal frequencies for both undamaged and damaged states revealed that temperature fluctuations, especially freezing events, caused significant variations. These effects were most prominent between observations 500 and 1500, indicating sharp increases in modal frequencies directly linked to thermal changes [24].
[image: ]
[bookmark: _Ref196830843]Fig. 2. Long-term modal frequencies of the Z24 Bridge identified in four stable modes 
The 3475 samples of the modal frequencies are related to the bridge normal condition, while the other samples pertain to the damaged condition. For the process of damage detection, a training dataset from 75% of all normal samples is generated. The remaining 25% of the normal frequencies is considered as the validation data in the test dataset. Using 300 sample clusters, the Gap statistic is applied to determine the optimal number of components (clusters) for the GMM-based pre-clustering. In this context, the optimal cluster number is identified where the Gap Statistic reaches its maximum. From Fig. 3, which indicates the Gap statistic value, one can observe the optimal choice occurs in the 45th sample cluster; hence, nc=45. Accordingly, the training data X is divided into 45 components. The mean vectors of these components are extracted and used as the main outputs of the GMM-based pre-clustering.
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[bookmark: _Ref197866235]Fig. 3. The Gap statistic for determining the optimal number of clusters (components) of GMM
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[bookmark: _Ref197866547]Fig. 4. Damage detection of the Z24 Bridge using the proposed HCAD method (i.e., NC: Normal Condition, DC: Damaged Condition)
The result of damage detection via the CDI and the centroids derived from the KMC-enhanced clustering stage is shown in Fig. 4. Having considered the CDI value of the training samples, the GEV model is fitted to the maximum values obtained from 36 blocks based on the approach proposed by Sarmadi and Karamodin [22]. In Fig. 4, the horizontal line depicts the GEV-based threshold limit. As can be observed, all CDI values of the training samples labeled as “Training: NC” are below the threshold limit, accurately detecting the normal state of the bridge. Most of the  CDI values of the validation samples labeled as “Testing: NC” have the similar treatment with the training points, while the only six points exceed the threshold leading to 0.18% false positive error. On the other hand, the majority of the CDI values of the test samples regarding the damaged condition labeled as “DC: Testing” are over the threshold, which accurately demonstrate the real detection of the damage occurrence on the Z24 Bridge. However, 21 CDI quantities fall below the threshold yielding 4.55% false negative error. Without the threshold, it can be perceived that the sharp increases in the modal frequencies of the Z24 Bridge are no longer present in the CDI values of the training data, especially between the samples 500-1500. This indicates the positive effect of the proposed HCAD method for mitigating the impact of the environmental, especially temperature, variability. Moreover, there is a clear difference between the CDI values of the normal and damaged conditions, indicating the reliable damage detectability provided by the proposed method.
Conclusions
This study introduced an unsupervised anomaly detection method, termed HCAD, specifically designed for vibration-based monitoring of civil structures under varying environmental conditions. The proposed method integrates GMM-based pre-clustering and KMC-enhanced clustering to effectively capture the structural behavior of civil structures under severe environmental changes. The Gap statistic was employed to determine the optimal number of components for GMM, resulting in the identification of 45 clusters. These clusters represent the intrinsic structural states of the bridge during its normal condition, serving as robust baseline references for anomaly detection.
The CDI was formulated based on the Euclidean distance from the enhanced centroids produced by the KMC-enhanced clustering phase. During the damage detection phase, the CDI values of the normal and damaged states were analyzed using a GEV-based threshold estimator. The validation results demonstrate that the method reliably distinguishes between normal and damaged conditions. Specifically, the false positive rate was limited to 0.18%, while the false negative rate was 4.55%, indicating high sensitivity and low error rates in damage detection. Furthermore, the proposed HCAD method successfully mitigated the impact of environmental variability, particularly temperature-induced frequency shifts, as evidenced by the absence of sharp modal frequency increases in the CDI values during the training phase.
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