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Abstract. Variability in environmental and operational conditions significantly affects the structural responses of bridges, making accurate assessment of these influences essential for effective structural health monitoring (SHM). In many cases, it is impractical or impossible to capture all relevant environmental and operational variables, limiting the effectiveness of standard supervised approaches to mitigate such effects. This study introduces a hybrid methodology that leverages the synergy between supervised and unsupervised learning to address both measured and unmeasured variability in bridge displacement responses extracted from synthetic aperture radar (SAR) satellite imagery. The proposed framework begins with a supervised regression-based artificial neural network (SR-ANN), which integrates available environmental data (e.g., recorded temperature) with SAR-extracted displacements. The SR-ANN’s performance is evaluated using the R-squared (R²) metric between original and predicted responses. If a high R² value (close to 1) is achieved, indicating a strong correlation with the measured temperature, the process concludes. Otherwise, an unsupervised reconstruction-based neural network (UR-ANN) is employed using only response data to reconstruct the displacements. Environmental and operational effects are mitigated by computing the residuals between original and reconstructed responses, serving as normalized outputs. This approach is validated using data from long-span bridges. Results confirm the effectiveness and practical value of the proposed technique in reducing the impact of both observed and latent variability.
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1 Introduction
Structural health monitoring (SHM) of bridge structures plays a pivotal role in ensuring the safety and longevity of these critical components of transportation networks [1]. As the demand for durable and reliable performance of bridge structures, the importance of continuous, accurate, and real-time monitoring becomes increasingly apparent. Sensors are indispensable tools in SHM that provide direct measurements regarding structural behavior and responses. Generally, a reliable and comprehensive monitoring program for a bridge structure involves measuring critical structural responses (e.g., acceleration, displacement, and strain) along with influential environmental and operational factors (e.g., temperature, humidity, wind flows, and traffic). For these purposes, common inexpensive sensing systems [2] and also some next-generation sensing technologies 


[3,4] ADDIN EN.CITE  facilitate SHM of bridge structures.

Satellite remote sensing offers another effective and efficient strategy for monitoring large-scale civil structures, particularly bridges, using some products such as synthetic aperture radar (SAR) images 


[5,6] ADDIN EN.CITE . In this context, SAR-based SHM is particularly valuable for assessing inaccessible bridge networks and providing critical data that can be used to assess structural health from a distance. The SAR-based SHM strategy is based on extracting structural displacement responses from SAR images. Despite the applicability of this approach to long-term monitoring practices [7], SAR-extracted displacement responses can be significantly influenced by environmental variability, particularly seasonal temperature changes 
 ADDIN EN.CITE 
[8,9]
. These environmental factors can induce apparent changes in the measured responses of bridges, which may not necessarily correspond to actual structural alterations 
 ADDIN EN.CITE 
[10-14]
.

Although temperature fluctuations are often recorded by installing temperature sensors in bridge structures during the measurement periods, other unmeasured environmental and operational conditions may affect structural behavior, directly influencing SAR-extracted displacements [15]. The negative effects of unmeasured environmental variability are particularly pronounced in regions experiencing extreme weather conditions, where the lack of comprehensive environmental data can lead to misinterpretations of sensor readings. Furthermore, variability in structural responses caused by either measured and unmeasured environmental and/or operational patterns encounter significant challenges for correct interpretations and analyses of measured data from sensors. In this regard, false alarms and mis-detection errors are critical consequences of variability in structural responses [16]. 

To address these challenges, machine learning-aided data normalization is an optimal solution. This technique comprises supervised and unsupervised models. Depending upon the measured environmental data and their impacts on structural responses, supervised regression models are developed to represent the relationship between the environmental and response data and then predict the responses 
 ADDIN EN.CITE 
[9,16]
. In contrast, unsupervised reconstruction-based models depend only on structural responses. These models acquire the measured responses and reconstruct them based on the model configurations 
 ADDIN EN.CITE 
[18,19]
. In both supervised and unsupervised data normalizers, the residuals between the measured and predicted/reconstructed response data serve as the normalized responses without the impacts of environmental and operational changes [11].
This study introduces a dual approach combining both supervised and unsupervised learning methodologies aimed at tackling the challenges posed by measured and unmeasured environmental and operational variabilities affecting bridge displacement measurements derived from SAR imagery from satellite sensors. Initially, the process begins with the deployment of a supervised regression-based artificial neural network (SR-ANN) that incorporates recorded environmental data (such as temperature) alongside bridge displacement data. The efficacy of the SR-ANN model is evaluated through the R-squared metric, comparing the original displacement data against the predictions. Should the R-squared value approach one, it indicates a substantial correlation between the recorded temperatures and the bridge displacements, concluding the analysis at this juncture. Conversely, if the correlation is found lacking, the methodology advances to employ an unsupervised reconstruction-based artificial neural network (UR-ANN) that utilizes only the displacement data to reconstruct the bridge's response profile. The approach further refines the analysis by extracting residuals between the original and reconstructed responses, which serve to normalize the data, effectively reducing environmental and operational noise. This technique is applied to data from long-span bridges, despite the limited availability of such data, with results affirming its potential to efficiently and accurately neutralize the impacts of environmental and operational variations on bridge monitoring data.
2 Proposed technique

The proposed technique represents a synergy between supervised and unsupervised models for data normalization. The supervised model is a regression-based ANN that incorporates recorded predictor (temperature) and response (SAR-extracted displacements) data for prediction. The unsupervised model is an autoencoder (AE) with a single hidden layer, using only the response data for reconstruction. Unlike common hybrid models, the proposed method develops an integrated yet independent data normalization solution. Using the available data (i.e., predictor and response), the SR-ANN model is initially trained to predict the response data and then to compute the residual or normalized response data. The performance of the supervised model and the impact of the predictor data are assessed by the R-squared (R²) metric. If an R² value close to one is achieved (i.e., R²>0.9), it can be deduced that the supervised part of the proposed technique is sufficient. Conversely, the unsupervised part is activated using only the response data and ignoring the predictor data. For simplicity, Fig. 1 depicts the graphical flowchart of the synergy between the SR-ANN and UR-ANN models for normalizing SAR-extracted displacements.
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Fig. 1. Graphical flowchart of the synergy between the SR-ANN (top path) and UR-ANN (bottom path) models for normalizing SAR-extracted displacements

2.1 Supervised Regression-Based Modeling
The supervised model, a regression-based ANN, incorporates predictor and response data to establish the model. After training the SR-ANN model, it receives only the predictor data as test input to forecast unseen response data. The residual between the original and predicted responses is then utilized as the normalized response [9]. 
The SR-ANN model employed in this research features a feed-forward configuration with a back-propagation mechanism. The input layer receives the n-dimensional predictor data (x), which corresponds to the recorded temperatures. To model the relationship between the predictor and the response data (i.e., n-dimensional SAR-extracted displacements y), the SR-ANN is designed with nh​ hidden layers, each containing nn​ neurons. Each hidden layer processes its input through a weighted sum followed by an activation function, typically a rectified linear unit or sigmoid for regression tasks. The output of each hidden layer is calculated as follows:
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where i=1,…, nh​; h0(x)=x; σ is the activation function; Wi denotes the weight matrix for the i-th hidden layer; and bi represents the bias vector of layer i. The final layer outputs a prediction ŷ, which is a function of the output of the last hidden layer:
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During training, the network uses a loss function to measure the accuracy of the predictions ŷ against the actual responses y. The mean-squared error (MSE) is a typical choice. The weights Wi​ and biases bi​ of the model are adjusted through optimization algorithms to minimize the MSE. The numbers of hidden layers and neurons of the SR-ANN model are the main hyperparameters, which are tuned by Bayesian hyperparameter optimization [18]. ‌Using the trained SR-ANN model, the normalized response is the residual between the original and predicted response data.
2.2 Unsupervised Reconstruction-Based Modeling
An AE is a well-known unsupervised ANN model used for data reconstruction, employing only the response data (y). It consists of encoding and decoding frameworks where the main goal is to learn a representation (encoding) for the training data. This encoded output is then used in a decoding strategy to reconstruct the input data. Given the limited number of response samples, the UR-ANN model for data normalization utilizes an AE with a single hidden layer.

The input layer of this model takes the n-dimensional training instances of the SAR-extracted displacement data. The hidden (encoding) layer compresses the input data into a lower-dimensional representation in the following form:
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where We and be denote the weight matrix and bias vector of the encoder, respectively. The compressed data he is applied to the decoder to reconstruct the input data as follows:
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where Wd and bd are the weight matrix and bias vector of the decoder, respectively. The AE training minimizes the discrepancy between the input data and its reconstruction using a loss function, typically the MSE. In the UR-ANN model, the single hyperparameter, i.e., the number of neurons in the hidden (encoding) layer, is optimized using a grid search algorithm. This optimization process evaluates neuron configurations based on the R² metric across different neuron samples. The configuration yielding the highest R² value is selected. The normalized response, generated by the developed UR-ANN model, is then obtained from the residual between the original and reconstructed response data.

3 Real-World Bridge Structure

A case study is applied to a steel arch bridge for highway traffic, featuring a primary span of 550 meters and two 100-meter side spans, as depicted in Fig. 2. The side spans consist of a closed steel box girder with dimensions of 41 meters in width and 2.7 meters in height, while the main girder component utilizes an open steel box-beam structure, comprising main box-girders linked by open cross-beams, measuring 39.5 meters wide and 2.7 meters high. Stiffening girders on the side spans are attached to ribs from both side and main arches, and the main span girder rests on sliding bearings at cross-beam intersections with the arch component.
[image: image6.jpg]Target Point #1





Fig. 2. The bridge picture as well as the target points (i.e., bridge arch and girder components) for displacement extraction

The bridge performance and serviceability are notably influenced by geological and environmental factors. For this reason, a one-year SAR-based SHM program was carried out to extract the displacement responses at target points 1 and 2 located in the bridge arch and girder components [7]. Recorded temperature data from contact sensors during the monitoring period were measured. Fig. 3 shows the SAR-extracted displacement responses and temperature records.
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Fig. 3. Recorded data during monitoring periods of the bridge in 2009-2010: (a) SAR-extracted displacement responses at the arch (target point #1) and girder (target point #2) components, (b) temperature records

4 Results and Discussions

The process of data normalization for mitigating the effects of temperature variability in the SAR-extracted displacement initially begins with training the SR-ANN model. In this regard, the data are split into 80% for training and 20% for testing. Table 1 details the hyperparameters of the model, tuned using Bayesian hyperparameter optimization. Fig. 4 illustrates the main outputs of the SR-ANN model including the comparisons between the original and predicted response data as well as the normalized responses (residuals) associated with the bridge arch and girder components. The last column of Table 1 also presents the performance of the SR-ANN model based on the R² metric. While this model effectively predicts and normalizes the displacement response of the girder component, the lower R² value for the arch component suggests that other environmental and operational conditions may influence the bridge response. This necessitates the activation of the UR-ANN model for normalizing the displacement data of the bridge arch component.

Table 1. Bayesian hyperparameter optimization of the SR-ANN model

	Component
	Layer no.
	Neurons
	R²

	Arch
	1
	5
	0.8352

	Girder
	2
	6, 7
	0.9222
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Fig. 4. Outputs of the SR-ANN model including the comparison between the original and predicted responses (left plots) and the normalized responses (right plots) of (a)-(b) the bridge arch (target point #1) and (c)-(d) girder (target point #2) components
To train the unsupervised model using only response data, the grid search algorithm with 20 sample neurons determines the optimal neuron of the single hidden layer of the AE. Table 2 presents the results of this hyperparameter optimization for the UR-ANN model, and Fig. 5 shows the outputs of this model for data normalization. As demonstrated in Fig. 5 and the last column of Table 2, the UR-ANN model can enhance the data normalization process. Particularly, it outperforms the SR-ANN model in normalizing the bridge response at the arch component. While the AE also improves data normalization for the girder, the SR-ANN and UR-ANN models show similar and reliable performances in normalizing the SAR-extracted displacements of the bridge girder.
Table 2. Grid-search hyperparameter optimization of the UR-ANN model

	Component
	Layer no.
	Neurons
	R²

	Arch
	1
	7
	0.9461

	Girder
	1
	7
	0.9711
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Fig. 5. Outputs of the UR-ANN model including the comparison between the original and reconstructed responses (left plots) and the normalized responses (right plots) of (a)-(b) the bridge arch (target point #1) and (c)-(d) girder (target point #2) components
5 Conclusions

The integration of supervised and unsupervised models presented in this study provides an effective approach to data normalization for SHM using SAR-extracted displacements influenced by environmental variables such as temperature. The proposed technique combines the strengths of the SR-ANN and UR-ANN models, each playing a crucial role in achieving a comprehensive normalization of the displacement data.

The SR-ANN effectively utilizes temperature and displacement data to predict responses and subsequently compute residuals. This model effectiveness is quantified using the R² metric, which in cases exceeding 0.9 suggests that the supervised component adequately captures the relationship between the predictors and responses. The UR-ANN model developed from a shallow AE with a single hidden layer is employed to handle scenarios where the performance of the supervised model does not meet the desired threshold. It reconstructs the displacement data from the response alone, ensuring that any unmodeled variability due to unmeasured factors is accounted for, enhancing the overall normalization process.

The dual-model approach allows for dynamic switching between the SR-ANN and UR-ANN based on the performance of the supervised model. This flexibility ensures optimal handling of various data quality and completeness scenarios, enhancing the robustness of the data normalization process. For the case study considered in this study, it has been observed that the synergy between the supervised and unsupervised ANN models leads to an effective data normalization process. While the SR-ANN model achieves reliable modeling performance, the UR-ANN is more successful, particularly in normalizing the displacement response of the arch component.
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