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Abstract. Damage localization is a critical component of data-driven structural health monitoring strategies. This paper proposes a methodology for identifying damage locations using two statistical indicators based on the reliability index, under the assumption that the features used for localization are normally distributed and independent. To construct these features, an AutoRegressive (AR) model is fitted to vibration responses measured by sensors installed on civil structures. The residuals of the AR model, extracted for both undamaged and damaged structural states, serve as the basis for localization. The proposed indicators are defined by computing the direct and relative differences between the reliability indices of the AR model residuals in the two structural states. Since damage increases the magnitude of these residual features, damage localization is achieved by identifying sensor locations associated with the highest indicator values. The effectiveness of the proposed method is validated using experimental acceleration time-series data collected from a sensor network deployed on a three-story laboratory frame. Results show that both statistical indicators can successfully localize structural damage, even under varying operational and environmental conditions.
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1 Introduction
Civil engineering infrastructures ensure economic prosperity and quality of life. Many of these systems play important roles in different applications such as transportation and social services, which have been constructed several decades ago. Therefore, there is an essential need to evaluate the health of structures and detect structural damage for the reasons associated with improved dynamic performance, appropriate operation, increased safety and reduced maintenance costs. Structural health monitoring (SHM) is a practical process that focuses on evaluating the health and integrity of structural systems and then detecting damage [1]. 
An SHM program consists of four levels: (1) detecting the existence of damage, (2) identifying the location of damage, (3) estimating the severity of damage, and (4) predicting the remaining service life of the damaged structure. In general, an SHM strategy can be carried out by model-based or data-based approaches. The model-based approaches need to construct a finite element (FE) model of structure and model updating for the validating of the FE model [2]. On the contrary, the data-based approaches only utilize vibration signals acquired from various sensors 
 ADDIN EN.CITE 
[3-6]
. In these techniques, structural damage affects the dynamic properties of a structure, resulting in a change in the statistical characteristics of the measured vibration signals [7]. Therefore, most of the data-based approaches utilize the vibration signals in the time domain on the basis of statistical pattern recognition (SPR) paradigm, which is decomposed into four steps including operational evaluation, data acquisition, feature extraction, and statistical decision-making for damage diagnosis (i.e. damage detection, localization, and quantification) [8]. On this basis, one of the important parts of data-based SHM is to statistical decision-making by efficient and reliable approaches. 
Damage localization in civil structures is of paramount importance for ensuring structural safety, optimizing maintenance efforts, and extending service life. Identifying the precise location of damage enables civil engineers to target inspections and repairs more effectively, reducing both downtime and costs associated with broad or unnecessary interventions. Given the importance of damage localization and recent progress in statistical pattern recognition, data-driven damage localization has received considerable attention among researchers and civil engineers. In this context, damage localization is performed through a systematic process that relies on measured vibration responses and statistical pattern recognition [9]. This process typically begins with the extraction of damage-sensitive features from raw or processed signals collected by a sensor network. Depending on the nature of the structural response, features can be derived using time-series modeling 
 ADDIN EN.CITE 
[10,11]
 or time–frequency decomposition approaches 
 ADDIN EN.CITE 
[7,12,13]
, serving as compact representations of structural behavior. In the next step, statistical indicators are employed to compare features associated with the undamaged (baseline) and current (potentially damaged) states of the structure. This comparison is often conducted using dissimilarity measures to quantify deviations indicative of local damage 
 ADDIN EN.CITE 
[7,9,13,14,12]
.

Despite the presence of reliable statistical approaches to locating damage, it seems that one needs to propose new efficient indices for damage localization under some challenging issues including the availability of environmental and operational variability (EOV) and high-dimensional features such as the residuals of time series models. Therefore, this article aims to propose two new damage indices for normally distributed independent data based on the theory of reliability index. These are square discrepancy reliability index (SDRI) and relative reliability index (RRI). The former computes the direct difference between the reliability indices of randomly features for the undamaged and damaged structures. In contrast, the latter is based on the relative difference in the randomly features. In order to extract the suitable features for damage localization, an AR model is fitted to the vibration time-domain response of each sensor in an effort to extract the model residuals as the randomly high-dimensional damage-sensitive features. Experimental datasets of a well-known benchmark structure in the context of SHM are applied to validate the accuracy and performance of the proposed damage indices under the ROV conditions.

2 Reliability Index

The reliability index is a useful indicator to compute the failure probability in the structural reliability analysis [15]. In this study, the basic concepts of this index are applied to assess the structural condition, particularly in the process of damage localization. The reliability index of a vector of random data is related to the type of data distribution. For normally distributed random variables or normal distribution (ND) of data, the reliability index is simply determined by computing its mean and standard deviation in the following form:
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where μ and σ are the mean and the standard deviation of the normally distributed random variables. For lognormal distribution (LD) the reliability index can be obtained as:
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where V denotes the coefficient of variation of lognormal distributed variables as V = σ / μ. As remarked in the preceding section, one of the advantages of the proposed feature extraction technique is that the extracted residuals are normal, randomness, and independent. Therefore, it is preferable to apply the reliability index in Eq. (1) for the process of statistical damage localization by the uncorrelated residuals. For non-normal distributions of data, the reliability index can be calculated using the procedure on the basis of normal approximation of non-normal distributions [16-18]. For cases in which the performance function or limit state function in the structural reliability analysis is complicated, the reliability index may be evaluated in an iterative manner [19].

3 Proposed Statistical Indicators
Despite the ability of the reliability indicators in the estimation of failure probability, they are not applicable to the process of damage detection. To use the capability of reliability index in the context of SHM, new damage indicators are proposed for normally distributed data on condition that these data are independent. On the basis of the proposed feature extraction technique, the extracted residuals are normal and independent. Thus, it can be applied to these datasets in the proposed damage indicators. One of the damage indicators, named as square discrepancy reliability index (SDRI), is based on computing the direct difference between the reliability indices of undamaged and damaged structures. This classifier develops the classical discrepancy reliability index (DRI) that is expressed as follows:
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where βu and βd are the reliability indices of undamaged and damaged structures, respectively. Although the DRI can show the structural changes in the baseline and damaged states, there are some reasons that make it impractical to use in the process of damage localization. The first one is that a negative mean value results in the reliability index becomes negative. Hence, the DRI value may be a negative amount, which is not meaningful. Second, it cannot precisely indicate the level of damage, particularly for small damage. To deal with these limitations, SDRI is proposed in the following form:
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Or in the form:
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where μu, μd and σu, σd are the mean and standard deviation of undamaged and damaged conditions. Based on this equation, the process of damage localization is carried out well and all values of SDRI become integer and positive. Another damage index is based on computing the relative difference between the reliability indicators of undamaged and damaged structures. On the basis of these indicators, βu and βd, relative reliability index (RRI) is written as follows: 
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For the sake of simplicity, the final equation of RRI one can express as follows:
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It is observed that the proposed relative reliability index depends only on the mean and standard deviation of residuals in the undamaged and damaged structural conditions. As expected by its name, the RRI varies in the range of 0 to 1 so that a zero quantity of RRI indicates the undamaged state of the structure. On the contrary, a value equal to 1 shows that the structure suffers damage.

4 Experimental Verification
In order to demonstrate the performance and capability of proposed methods, experimental datasets from a three-story laboratory frame are applied that belongs to the Engineering Institute at Los Alamos National Laboratory [20]. The structure is a three-story laboratory frame whose schematic and sensor locations are shown in Fig 1. A random vibration load is applied by means of an electrodynamic shaker to the base floor along the center line of the frame. The structure is instrumented with four accelerometers mounted at the center line of each floor on the opposite side from the excitation source to measure the acceleration time history response. The shaker and frame are mounted together on an aluminum baseplate and the entire system rests on rigid foam. The sensor signals are sampled at 320 Hz for 25.6 seconds in duration, which are discretized into 8192 data sampled at 3.125-microsecond intervals.
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Fig. 1. The three-story laboratory frame

Table 1. The structural state conditions of the laboratory frame
	State no.
	Condition
	Description

	1
	Undamaged
	Baseline condition without damage and EOV

	2-3
	Undamaged
	Simulated operational variability by adding a concentrated mass (1.2 kg) on the base and first floors

	4-9
	Undamaged
	Simulated environmental variability by decreasing structural stiffness at the first, second and third floors

	10-14
	Damaged
	Nonlinear damage (Gap = 0.20, 0.15, 0.13, 0.10, and 0.05 mm)

	15-17
	Damaged
	Nonlinear damage (Gap = 0.20, 0.20, and 0.10 mm) with simulated operational variability at the base and first floors


Damage to the structure was simulated as the breathing crack by a bumper mounted on the second floor and a suspended column at the third story. Since the position of the bumper was adjustable, several damage scenarios with different severities were considered into the damaged conditions. On the other hand, diverse undamaged states by incorporating EOV conditions were defined to simulate realistic conditions. Table 1 presents 17 structural states of the laboratory frame.

Before analysis of results, it is important to demonstrate the reasons for choosing AR model through numerical evidence. This is a hypothesis test called Leybourne-McCabe (LMC) test [21], which is usually used to evaluate the stationarity of time series data. Apart from this property, this test is a suitable tool for making sure of choosing the AR model for feature extraction. Similar to most of the statistical hypothesis test, it gives a p-value, a test statistic (Q) and a c-value based on a significance level. Using a 5% significance level, if p-value≥0.05 or Q<c-value, one can infer that the time series data is not only stationary but also conforms to the AR model. Table 2 presents the p-values of the LMC test at the sensors 2-5 of the states 1 and 14.

Table 2. Stationarity assessment and AR model identification by the p-values of LMC test

	State no.
	Sensor no.

	
	2
	3
	4
	5

	1
	0.1
	0.1
	0.1
	0.1

	14
	0.1
	0.1
	0.1
	0.1


The p-values of the LMC test for the sensors 2-5 of the states 1 and 14 are larger than 0.05. These demonstrate that the acceleration time histories of the mentioned sensors are stationary. Moreover, it can be realized that the vibration responses conform to the AR model. Therefore, the choice of this model for feature extraction is reasonable. In the following, one needs to determine an adequate order for the AR model. In this article, the iterative order determination approach proposed by Entezami and Shariatmadar [10] is used to choose the model order at each sensor. In the state 1, the orders of the sensors 2-5 are identical to 50, 51, 38, and 41, respectively. Subsequently, the coefficients of AR models are computed by the Yule-Walker approach [22]. Eventually, the residuals of the AR model at each sensor of the undamaged and damaged conditions are extracted as the main damage-sensitive feature used in the proposed SDRI and RRI method.
In order to evaluate the performance and effectiveness of the damage indicators, the results of SDRI and RRI are discussed on the basis of using the uncorrelated residuals extracted from the proposed feature extraction technique at the sensor 4 and 5. The main reason to select these sensors is that they are the location of nonlinearity damage as stated in [20].  

Fig. 2 displays the amounts of SDRI at the sensors 4 and 5, respectively. In Fig. 2(a), there is not significant SDRI values in the states 2-8, which have been introduced the EOV conditions. In the state 9, however, the amount of SDRI is more than other EOV conditions because the sensor 4 is nearby the story 3, which has linear changes as the reduction of stiffness. In contrast, as shown in Fig. 2(b), the amounts of SDRI in the EOV conditions are very small and they are roughly equal to the results of the baseline condition. 

In both Fig. 2(a) and 2(b), the damaged states give larger SDRI quantities in comparison with the baseline condition. On this basis, it can be seen that the values of SDRI increase from the state 10 (the lowest level of damage) to the state 14 (the highest level of damage) in an ascending manner. Furthermore, the same conclusion as in the damaged states can be achieved for the states 15-17. This result indicates that the influence of EOV cannot affect the SDRI values and also implies that the extracted features are mostly related to the damage.
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Fig. 2. Evaluation of the proposed SDRI method: (a) Sensor 4, (b) Sensor 5
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Fig. 3. Evaluation of the proposed RRI method: (a) Sensor 4, (b) Sensor 5
The amounts of RRI at the sensors 4 and 5 are illustrated in Fig. 3. As Fig. 3(a) shows, the values of RRI in the damaged states are considerably more than the corresponding value in the baseline condition. In these cases, the RRI values vary from 90% and 100%, which accurately indicate the high levels of damage in the frame. Furthermore, the same results have achieved in the state 15-17. In such conditions, the value of RRI in the state 17 is most quantity (near 100%) since it refers to the highest level of damage along with the EOV effects. On the contrary, the state 15 has the fewest value of RRI (roughly 40%) due to indicating the lowest level of damage. 
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Fig. 4. Damage localization in the states 10-14: (a) SDRI, (b) RRI
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Fig. 5. Damage localization in the states 15-17: (a) SDRI, (b) RRI

In the EOV states (linear changes), the RRI quantities are fewer than the corresponding values in the damaged states (nonlinear changes), however, the state 9 still shows a considerable amount of RRI (60%). The same conclusions have been achieved from the results of RRI at the sensor 5 as shown in Fig. 3(b). That is, the damaged states have the largest values of RRI in comparison with the baseline condition and the corresponding values in the EOV states reduces than the corresponding results at the sensor 4. One great advantage of RRI is that it gives the damage detection results in the range of 0 to 1 or 0 to 100%. This means that any RRI amount close to 1 or 100% implies the highest level of damage. As can be observed from Figs. 9 and 10, the state 13 and 17 have the nearest RRI amounts to 100%, therefore, the state #17 is the highest levels of damage in the presence of EOV effects.

The other study is conducted to investigate the performance of the damage indicators in the process of damage localization as shown in Fig. 4. In this figure, the horizontal axes of these figures represent the number of sensors, which varies from 2 to 5. The results of SDRI and RRI in Fig. 4(a) and 4(b) demonstrate that the sensors 4 and 5 are the locations of damage for this reason that the largest values of damage indicators at these sensors are noticeably more than the corresponding values at the sensors 2 and 3. Nevertheless, it is seen that the damage indicators cannot precisely estimate the severity of damage. 

As the other investigation, it is evaluated the performance of the proposed SDRI and RRI methods for locating damage under the presence of EOV conditions in the damaged states. The results of damage localization by the proposed damage indicators are shown in Fig. 5. As can be observed, the locations of sensors 4 and 5 are representative of the damaged areas in the laboratory frame. The quantities of SDRI and RRI in the state 17 (the highest level of damage with EOV effects) are more than the states 15 and 16, which indicate the lowest levels of damage. The reasonable results from Fig. 5 prove that the EOV conditions in the damaged states do not have any influence on the process of damage localization
5 Conclusions

In this article, two simple and efficient damage indicators named SDRI and RRI have been proposed to locate damage by using randomly high-dimensional features under the EOV conditions. The AR model has been fitted to the acceleration time histories of the benchmark laboratory frame to extract the model residuals for the undamaged and damaged states.
The LMC test has been applied to verify the accuracy of choosing the AR model for feature extraction. The results have demonstrated that both of the damage indicators can identify the damage locations in the way that the sensor locations regarding the largest values of SDRI and RRI are indicative of the damaged areas. It has been observed that RRI has better capability for identifying the damage locations than SDRI since its values vary in the ranges of 0-1 or 0-100%. A value of RRI close to zero indicates that there is no damage to the structure, whereas an amount nearby 1 or 100% is indicative of the damage occurrence. Another conclusion is that the EOV in the damaged conditions do not have any influence on the results of damage localization.
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