

NEUTRON RESONANCE SPIN ECHO

05.07.2025 CHRISTIAN FRANZ

This talk tries to give an overview on the status of NRSE (for QENS) worldwide, however a lot examples come from RESEDA in Munich.

Not everything is my work!

REPLACING NSE COILS BY NRSE FLIPPERS

Goulub, Gähler

NEUTRON RESONANCE SPIN ECHO GEOMETRY

"Classic" transverse NRSE

longitudinal NRSE

New transverse NRSE

NEUTRON SPIN ECHO TECHNIQUES WORLDWIDE

Normal and superconducting versions!

LONGITUDINAL VS. TRANSVERSAL

Transverse field geometry

++

- Larmor diffraction (LaDiff)
- Phonon focussing (TRISP)
- Field inhomogenities
- Beam divergence
- limited to few ns

Longitudinal field geometry

++

- Self-correction for nondivergent beams
- Fresnel, Pythagoras coils
- Large dynamic range

- no Larmor diffraction
- no inelastic focussing

Häußler, Schmidt, Chem. Phys., 2005, 7, 1245-1249 Mitglied der Helmholtz-Gemeinschaft

DIVERSE APPLICATIONS: NRSE AND MIEZE

MIEZE GEOMETRY REDUCTION FACTOR

Small sample favorable for high resolution

Mitglied der Helmholtz-Gemeinschaft

Seite 8

Forschungszentrum

NRSE VS. MIEZE

Neutron Resonance Spin Echo

- Similar to conventional NSE (smaller detector area)
- Very high resolution possible
- High momentum transfers possible
- × No external magnetic field
- Magnetic samples difficult
- Strong incoherent scatterer reduce polarisation (deuteration)

Modulation of Intensity with zero effort

- Similar to high-resolution TOF
 (or SANS with energy resolution)
- Magnetic field possible (17T unshielded proven)
- Ferromagnetic samples possible (see data on UGe₂)
- Ideal for incoherent scattering (see data on pure water!)
- Reduced resolution(depends on detector position)
- Momentum transfer limited by sample geometry (and size)

MIEZE SCIENTIFIC EXAMPLES

Forschungszentrum

COMPARE MIEZE WITH TOF

Using H_2O

- Heuristic model for H₂O
- ToF: TOFTOF (MLZ)
 FOCUS (PSI)
- MIEZE: RESEDA (MLZ)
- For ToF: Convolution with instrument resolution
- For MIEZE: Bose-factor, detector efficiency, k_f/k_i, go beyond spin-echo approximation
- Sample geometry plays
 an important role
- Large dynamic range possible!

ENTANGLEMENT IN QUANTUM SYSTEMS

JÜLICH

Forschungszentrum

Detector translation from focus (mm)

PULSED SOURCE & LOW DIMENSION MODERATOR

General considerations

continous source vs. pulsed source

- measure at constant field integral, but get a range of spinecho times
- most efficient for flat neutron spectrum

requirements

- polarise large wavelength band
- B₀ fields stay constant during pulse
- RF field amplitude has to change
- $\pi/2$ flipper current has to change
- Fast detector with event mode data

Brandl et al. *Nucl.Instrum.Meth.A*, **667** (2012) Georgii et al. *Nucl.Instrum.Meth.A* **837** (2016) Geerits et al. Rev. Sci. Instr., **90** (2019) Kuhn et al. *Journ. Appl. Cryst.* **54** (2021) Funama et al. *JPS Conf. Proc.* **33** (2021)

PULSED SOURCE & LOW DIMENSION MODERATOR

NEUTRON TRANSPORT AND PRIMARY SPECTROMETER

Neutron transport

- maximise flux at sample position
- optimise for small samples
- small flippers allow higher resolution
- slit system for SANS appications

Elliptic guide

C. Herb, arXiv:2202.07899v1 (2022)

Nested mirror optics (NMO)

HBS Technical Design Report (2024)

POLARISATION ANALYSIS FOR MIEZE

Forschungszentrum

THERMAL NRSE & MIEZE

TIGER @ RESEDA

Extending the measurement capabilities of RESEDA towards thermal wavelengths \rightarrow Larger momentum transfer Q \rightarrow Larger energy transfer (smaller T) e.g.: 2Å $\rightarrow \Delta$ Emax = 2.05meV $Q_{max} = 3.14$ Å⁻¹ $T_{max} = 0.85$ ns (QE: 7.23µeV)

THERMAL NRSE & MIEZE

TIGER @ RESEDA

New Science Cases:

- Investigation of Quantum Spin Liquid Candidates
- Accurate determination of low-lying Crystal Electric Fields
- Measuring Spectra/Decay of AF Magnons
- Hidden processes in disordered hard matter systems

- As thermal neutrons have a lower absorption coefficient → Lithium and Hydrogen Dynamics
- Q-independent processes on timescales down to femto seconds
- Diffusion in ionic liquids and solvent based electrolytes

WIDE ANGLE MIEZE (WAMI)

offers high intensity probe of diffusion and relaxation

Large spherical detector + large bandwidth = high intensity

Preserves key MIEZE advantages of:

- Wide neutron bandwidth
- Large dynamic range (similar Fourier times as WASP)
- Nothing between sample and detector
- Depolarizing samples do not change signal
 - Hydrogenous, magnetic, sample environment ok

Requires beam focusing to 1 mm and thin, large detector

Science case: Complex/confined liquids

Steve Kuhn

Tertahydrofuran on WASP

Arbe, A., Nilsen G, et al. *J. Chem. Phys.* 158, 184502 (2023)

Detailed pLET and WASP study determined coherent and incoherent scattering functions of van der Waals liquid

Incoherent hydrogen scattering does not reduce MIEZE resolution

WAMI would offer measurement in time domain and simultaneous measurement of many ${\it Q}$

Option to add He-3 analyzer after sample to differentiate coherent and incoherent scattering

Confined liquids also large field suitable for WAMI High pressure cells compatible with beam focusing

WIDE ANGLE MIEZE (WAMI)

offers high intensity probe of diffusion and relaxation

Perrichon, A. et al Chem. Mater. 35 6713 (2023)

QENS finds a novel method for higher proton conductivity in batteries by measuring multiple residence times

Small samples encouraged for WAMI - useful for novel materials that are hard to synthesize

Glass relaxation times also well-suited for WAMI Mitglied der Helmholtz-Gemeinschaft

Science case: Hydrogen Storage

Palladium hydride shown to have two relaxation states by QENS

WAMI offers wide dynamic range to cover most of tau range with one instrument – similar energy range as WASP and IN16b

Kofu, M. et al. *Phys. Rev. B* 94, 064303 (2016)

Science case: iron oxide nanoparticles – see next 2 speakers

Option to add He-3 analyzer after sample to differentiate spin flip and non spin flip scattering

INSTEAD OF A SUMMERY...

Do you see your science case represented here?

Let us know!

<u>c.franz@fz-juelich.de</u> Johanna.jochum@frm2.tum.de <u>kuhnsj@ornl.gov</u>

Thanks for a very refreshing conference!

