*New birational invariants

Ludmil Katzarkov - University of Miami

Birational Geometry

An algebraic variety X is rational over \mathbb{C} if $\mathbb{C}(X) \cong \mathbb{C}(x_1, \ldots, x_n)$, where $n = \dim_{\mathbb{C}} X$.

Example

Let $X \subset \mathbb{P}^2$ be a smooth cubic curve.

- ★ Hodge numbers: $h^{1,0}(X) = 1$.
- Since $h^{1,0}(X) \neq 0$, X is not rational.

Example (Surfaces (dim 2))

A smooth cubic $X \subset \mathbb{P}^3$ is rational.

Let $X \subset \mathbb{P}^4$ be a smooth cubic threefold.

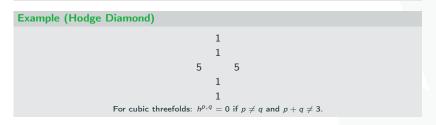
Intermediate Jacobian (Clemens-Griffiths)

For X with dim_{\mathbb{C}} X = 3:

$$J^{2}(X) := rac{(H^{2,1})^{*}}{H^{3}(X,\mathbb{Z})}$$

Key properties:

- Principally polarized abelian variety of dimension $\frac{1}{2}b_3(X) = 5$
- * Obstruction to rationality: $J^2(X)$ is **not** isomorphic to Jac(C) for any curve C



Theorem (Clemens-Griffiths (1972))

A smooth cubic threefold $X \subset \mathbb{P}^4$ is irrational because:

- Its intermediate Jacobian J²(X) is the Jacobian of a curve only if X is a blowup of P³.
- For cubic threefolds, J²(X) decomposes as a product of Jacobians of curves X is rational.

Key Computation

For $X \subset \mathbb{P}^4$:

$$H^{2,1}(X) \cong H^{1,2}(X) \cong \mathbb{C}^5, \quad H^3(X,\mathbb{Z}) \cong \mathbb{Z}^{10}$$

Thus, $J^2(X)$ is a 5-dimensional abelian variety not isogenous to any product of curve Jacobians.

Hodge-Theoretic Methods

- * Intermediate Jacobian (Clemens-Griffiths).
- Brauer group (Artin-Mumford).

Geometric Methods

- * Birational automorphisms (Iskovskikh-Manin).
- Degenerations (Voisin, Kollár, Pirutka).

Analytic Methods

Multiplier ideal sheaves (Nadel, Ein-Lazarsfeld).

Let $X \subset \mathbb{P}^5$ be a smooth cubic fourfold.

Hodge diamond:

* Is X rational? Katzarkov-Kontsevich-Pantev-Yu: no.

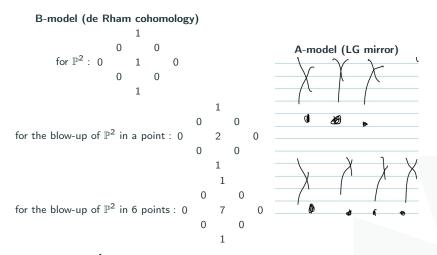
Homological Mirror Symmetry

Statement: For a smooth projective variety X, HMS relates:

- * **B-model**: Derived category $D^b_{coh}(X)$.
- ★ A-model: Fukaya-Seidel category FS(Y, W).

Example (Mirror of \mathbb{P}^2)

$$D^{b}(\mathbb{P}^{2}) \longleftrightarrow FS\left(\mathbb{C}^{2}, W = x + y + \frac{1}{xy}\right)$$



ncHodge structure¹ on periodic cyclic homology links A/B-models.

¹Non-commutative Hodge structure encoding GW invariants.

Let $X \to Z_t$ be a family of smooth threefolds.

Monodromy Action

The monodromy operator acts on $H^2(Z_t, \mathbb{Z})$: $\mu : H^2(Z_t, \mathbb{Z}) \to H^2(Z_t, \mathbb{Z}), \quad \mu = \operatorname{diag}(1, \epsilon, \epsilon^2), \ \epsilon^3 = 1.$

Example (Cubic Threefold)

For $X \subset \mathbb{P}^4$, μ is non-nilpotent $\implies X$ is irrational (Clemens-Griffiths).

Theorem (Katzarkov-Przyjalkowski)

Let X be a smooth Fano threefold with $\operatorname{Pic}(X) \cong \mathbb{Z}$ and $X \not\simeq \mathbb{P}^3$. Then X is rational **if and only if** the monodromy operator μ is nilpotent.

The LG mirror of a cubic threefold $X \subset \mathbb{P}^4$ is the fibration by open K3 surfaces given by the potential :

$$W = \frac{(x+y+z)^3}{xyz} + z \quad \text{on } \mathbb{C}^3.$$

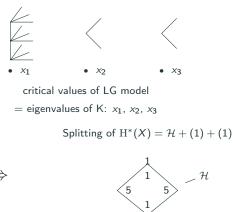
This family of K3 surfaces has 3 singular fibers - two fibers with ordinary double points and one open-book singularity.

Let \mathcal{F} be the perverse sheaf of vanishing cycles of the potential. Then, $\dim \mathbb{H}^1(\mathcal{F}) = 5$, $\dim \mathbb{H}^2(\mathcal{F}) = 4$, $\dim \mathbb{H}^3(\mathcal{F}) = 5$. A+B

$\rm H_{dR}{+}Eingevalues$ of Quantum Multiplication

Splitting the Hodge Structure

If we further split the cohomology of X into generalized eigenspaces for the operator K of quantum multiplication by $c_1(X)$, or equivalently split the cohomology of \mathcal{F} according to the critical values of the potential, we obtain as a piece a Hodge structure \mathcal{H} which is exactly the Clemens-Griffiths invariant:



Quantum differential equation:

$$\left(\frac{\partial}{\partial u} - \frac{1}{u^2}\mathsf{K} + \frac{1}{u}\mathsf{G}\right)\psi(u) = 0$$

- * K: Quantum multiplication by $c_1(X)$.
- * G: Connection matrix (flat coordinates).

Theorem (Katzarkov-Kontsevich-Pantev-Yu)

For a projective variety X:

* **Decomposition**: $H^*(X)$ splits into H_{λ_i} , labeled by eigenvalues of K.

 Birational invariance: Elementary pieces H_{λi} (modulo codimension ≥ 2) are birational invariants.

Applications

- * Singular fibers of LG mirror \leftrightarrow eigenvalues of K.
- * Integral Hodge structure on $\mathbb{H}^{i}(\mathcal{F})$ is computable via $\mathrm{QH}(X)$.

Atoms and Euler Fields

Hodge Subspace and Euler Field

 Let X be a complex projective variety. Consider the subspace of even Hodge classes:

$$H_{\mathsf{Hodge}}(X) := \bigoplus_{i} \left(H^{i,i}(X) \cap H^{2i}(X, \mathbb{Q}) \right)$$

- * This defines a purely even Frobenius manifold \mathcal{F}_X over \mathbb{K} .
- * The Euler field $Eu \in \Gamma(\mathcal{F}_X, T_{\mathcal{F}_X})$ is: $Eu = c_1(T_X) + \sum_{\substack{i \\ \deg \Delta_i \neq 2}} \frac{\deg \Delta_i - 2}{2} t_i \Delta_i$
- * At a generic $p \in \mathcal{F}_X$, the spectrum of $Eu \star \cdot$ gives a μ -fold spectral cover.

Definition (Atoms)

Atoms $_X$ are the connected components of this spectral cover.

Ŧ

• Key Example: If K_X is nef, Atoms_X is trivial (quantum product preserves $H^{\geq \bullet}(X)$).

Asymptotics of the Quantum Differential Equation

Quantum differential equation (QDE):

$$\left(\frac{\partial}{\partial u} - \frac{K}{u^2} + \frac{G}{u}\right)\psi = 0$$

Eigenvalues: Asymptotic solutions $\psi(u) \sim e^{\sigma/u}$ correspond to eigenvalues σ of K $\star \cdot$.

Theorem (Non-rationality criterion)

Let X be a Fano hypersurface of degree d in \mathbb{P}^{N-1} . Define: $\delta := \dim X - 2 \cdot \frac{N-d}{d}$.

If $\delta > \dim X - 2$, then X is not rational.

Example (4D Quartic)

$$X \subset \mathbb{P}^5, \ d = 4, \ N = 6;$$

 $\delta = 4 - 2 \cdot \frac{6-4}{4} = 3 > 2 \quad (\dim X - 2 = 2) \implies \text{not rational.}$

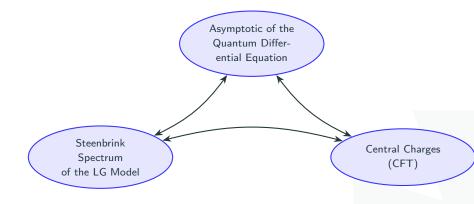
Example (5D quartic)

$$\delta = 5 - 2\left(\frac{7-4}{4}\right) = 5 - 3\frac{1}{2} > 3$$

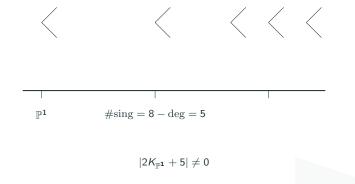
Example (3D cubic)

For the three-dimensional generic cubic:

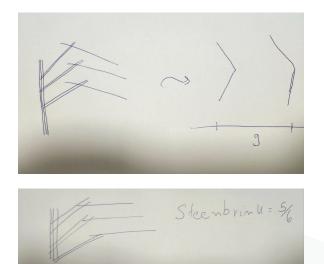
$$\delta = 3 - 2\left(\frac{5-3}{3}\right) = \frac{5}{3} > 3 - 2 \implies \text{not rational}$$



 X_k a 2-dimensional cubic with $\operatorname{Pic}(X_k) \cong \mathbb{Z}_2$.



On the LG side: $H^0 + H^2 + H^4 = \mathbb{Z}^9$, Steenbrink=0.



Example: Hypersurface Model

Setup:

- * Let $X_{\text{geom}} \subset (\mathbb{P}^1)^4$ be a smooth hypersurface of degree (1, 1, 1, 1) over an algebraically closed field k.
- * Key Fact: X_{geom} is the blowup of $(\mathbb{P}^1)^3$ at an elliptic curve E.

Atomic Structure

- * 8 simple "point-like" atoms.
- * 1 atom α_E linked to E.

New Setup:

- Define X over a non-closed field k.
- * Assume the Galois group mixes the 4 factors of $(\mathbb{P}^1)^4$.

Key Calculation

At the "naive" point $q_i = 1, t_i = 0$:

Eigenvalues of
$$Eu \star \cdot = \left\{ \underbrace{\lambda_1}_{\text{mult 1}}, \underbrace{\lambda_2}_{\text{mult 4}}, \underbrace{\lambda_3}_{\text{mult 7}} \right\}$$

- ✤ The third piece has Hodge numbers: 5 (middle), 1 (top/bottom).
- Only 2 algebraic cycles defined over k.

Thank you!

