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MAIN GOALS OF THE PRESENT TALK:

1) Introduction of Tom and Jerry triples unprojection format.

2) Use Tom and Jerry triples unprojection format for the
construction of two families of codimension 6 Fano 3-folds
described in the Graded Ring Database.
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PRELIMINARIES
ASSUMPTION All rings are commutative and with unit.

DEFINITION Assume A = [a;] is an m x m skewsymmetric
matrix,
(i.e., ajj = —ajj and a;; = 0) with entries in a ring R.

o If m = 2£ then det A = f(a;)?.
The polynomial f(aj) is called the Pfaffian of the matrix A
and is denoted by Pf(A).

o If m=2€+ 1 by Pfaffians of A we mean the set
{Pf(A1), Pf(A2),...,Pf(Am)},

where A; denotes the skewsymmetric submatrix of A obtained
by deleting the ith row and ith column of A.
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EXAMPLE

@ Form=2:

0 a2 o
Pf( (_312 0 )) = ai?2

@ For m=5:

0 alp a3 aws  ass
—app 0 a3 ax  ax
Pf(| —aiz —ax3 O a3y ax |) =

—ay —ax —az 0 ags
—ais —axs —azs —ags 0

= {Pf(A1), Pf(A2),...,Pf(As)}
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where,

Pf(A1) = ar3ass — axsass + arsazs,
Pf(A2) = a13a45 — a14ass + a15a34,
Pf(A3) = aipass — a1aazs + aisaos,
Pf(A4) = arpass — a1zazs + arsazs,

Pf(As) = aioass — a1zazs + aiaans.
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DEFINITION A Noetherian local ring R is a Gorenstein ring if
injdimg R < o0.

More generally, a Noetherian ring R is called Gorenstein if for every
maximal ideal m of R the localization Ry, is Gorenstein.

EXAMPLES OF GORENSTEIN RINGS

@ The anticanonical ring R = @mzo HO(X, Ox(—mKx)) of a
(smooth) Fano n-fold.

@ The canonical ring R = ®m20 H°(X, Ox(mKx)) of a
(smooth) regular surface of general type.

@ The Stanley-Reisner ring of a simplicial sphere over any field.
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THEOREM Let R = k[x1,...,xm]/I be the polynomial ring in n
variables divided by a homogeneous ideal /.

o (Serre) If codim | = 1 or 2 then
R is Gorenstein < | is a complete intersection.

@ (Buchsbaum-Eisenbud (1977)) If codim | = 3 then
R is Gorenstein < [ is generated by the 2n x 2n
Pfaffians of a skewsymmetric (2n+ 1) x (2n+ 1) matrix with
entries in k[xi, ..., Xm].

QUESTION Is there a structure theorem for codim | > 4 ?
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e A.Kustin & M.Milller (1983) introduced a procedure which
constructs more «complicated» Gorenstein rings from simpler
ones by increasing codimension. This procedure is called
Kustin-Miller unprojection.

e M.Reid (1995) rediscovered what was essentially the same
procedure working with Gorenstein rings arising from K3
surfaces and 3-folds.
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UNPROJECTION REVIEW
Kustin-Miller unprojection

Assumptions of Kustin-Miller unprojection:
@ J C R codimension 1 ideal
@ R Gorenstein
e R/J Gorenstein.

Codimension: increasing by one.
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Applying the functor Homg(—, R) to the following short exact
sequence
0—-J—-R—>R/J—0

we get a corresponding long exact sequence.

Using duality theory, we obtain the exact sequence
0 — R — Homg(J,R) - R/J—0

with the last nonzero map corresponding to the Poincaré residue
map of complex geometry.

Hence, there exists ¢ € Homg(J, R) such that together with the
inclusion i : J — R generate the R-module Homg(J, R).
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DEFINITION (Reid) The Kustin-Miller unprojection ring of the
pair J C R is the ring

R[T]

Unpr(J, R) = graph of ¢ = (Ta—o¢(a): acJ)

where T is a new variable.

THEOREM (Kustin-Miller, Reid-Papadakis) The ring Unpr(J, R)
is Gorenstein.

REMARK: We have that Unpr(J, R) has typically more
complicated structure than both R, R/J and is useful to
construct/analyse Gorenstein rings in terms of simpler ones.
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Parallel Kustin-Miller unprojection

Kustin-Miller unprojection can be used many times in an inductive
way to produce Gorenstein rings of arbitrary codimension, whose
properties are nevertheless controlled by just a few equations as a
number of new unprojection variables are adjoined.

APPLICATIONS
@ Construction of new interesting algebraic surfaces and 3-folds.

@ Explicit Birational Geometry.
(That is, writing down explicitly varieties, morphisms and
rational maps that Minimal Model Program says they exist.)

@ Algebraic Combinatorics.
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Neves and Papadakis (2013) develop a theory, which is called
parallel Kustin-Miller unprojection.

They set sufficient conditions on a positively graded Gorenstein
ring R and a finite set of codimension 1 ideals which ensure the

series of unprojections.

Furthermore, they give a simple and explicit description of the end
product ring which corresponds to the unprojection of the ideals.

This theory applies when all the unprojection ideals of a series of
unprojections correspond to ideals already present in the initial ring.
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TOM & JERRY TRIPLES

Assume J is a codimension 4 complete intersection ideal and M is
a 5 x 5 skewsymmetric matrix.

DEFINITION

@ Assume 1 < j <5. The matrix M is called Tom; in J if after
we delete the i-th row and i-th column of M the remaining
entries are elements of the codimension 4 ideal J.

@ Assume 1 </ < j <5. The matrix M is called Jerry;; in J if
all the entries of M that belong to the i-th row or i-th column
or j-th row or j-th column are elements of J.

REMARK In both cases the Pfaffian ideal of M is a subset of J.
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Papadakis' Calculation for Tom (2004)

Let R = k[xk, zx, mf] , where 1 < k<4 ,2<i<j<5, bea
polynomial ring. Set J = (z1, z, z3, z4). Denote by

0 X1 X2 X3 X4
—X1 0 mo3 M4 Mos
N=]-x —m3 0 msg  mss |,
—x3 —mpq —m3zg 0 mys

—x4 —mps —m3s —mys 0

where

4
k
m;j = Z m,-jzk.
k=1

Let / be the ideal generated by the Pfaffians Py, Py, P>, P3, P4 of
N. It holds that | C J.
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Papadakis using multilinear and homological algebra calculated the
equations of the codimension 4 ring which occurs as unprojection
of the pair I C J.

More precisely, he calculated 4 polynomials g; fori=1,...,4

and defines the map ¢ by

¢:J/I =R/, zi+1+— g+ 1.

Moreover, he proved that Homg//(J/1, R/I) is generated as R/I-
module by the inclusion map i and ¢. From the theory it follows
that the ideal

(Po, P1, P2, P3, Pa, Tzy — g1, Tzo — g, Tz3 — g3, Tz4 — ga)

of the polynomial ring R[T] is Gorenstein of codimension 4.
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We will now define Tom & Jerry triples.

Let
0 mp  m3 M4 Mis
—mi2 0 mo3 M4 Mg
M=1-mg3 —m3 0 m3q  Msg
—Mmis —Mo4 —M3y 0 Mys

—mis —mos —m3s —mas 0

be a 5 x 5 skewsymmetric matrix and J;, Jo, J3 be three complete
intersection ideals of codimension 4.
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Tom & Tom & Tom case

DEFINITION We say that M is a Tom; + Tomy + Toms in
J1, b, J3 if the entries of M satisfy the following conditions:

mip € J3, m3 € o, mya,mis € b N J3, mo3 € Jp,
mog, mps € Sy NSz, m3g,mzs € J1NJo, mys € SN Nz,

REMARK Equivalently, the matrix M is Tomy in J;, Toms in J,
and Toms in Js.

Similarly, we set conditions in the entries of M such that M is
e Jerryji in Ji, Jerryy in J> and Jerrypm, in Js.
@ Tom; in Ji, Tom; in J and Jerryy in Js.

e Tom; in Ji, Jerryj in J> and Jerry), in J3.
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We work over the polynomial ring R = k[z;, ¢j], where 1 <i <7
and 1 < j < 25. Denote by Tom(1,2,3), the following 5 x 5
skewsymmetric matrix

0 cizit+czotc3z3+cazs  Cszi+Cezat+crzatcgzs  Cozi+Cioze Ci11z1+Ci2z2
0 C1322+C1423+C1525+C1627 C1722+C1823 C1922+C2023
0 122122275 €322+C2475
—Sym 0 C2522
0

which is Tomi+Toms+Toms matrix in the ideals

h=(2,23,25,27), Jo=(21,22,24,25), J3=(21,20,23,2).

Let / be the ideal generated by the Pfaffians of Tom(1,2,3).
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PROPOSITION

(i) For all t with 1 <t < 3, the ideal J;/I is a codimension 1
homogeneous ideal of R/ with Gorenstein quotient.

(i) For all t,s with 1 <t < s < 3, it holds that

codimgi(Jt/1+ Js/1) = 3.
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AIM: Compution of ¢¢: Ji/I — R/l for all t with 1 <t < 3.

STRATEGY: We combine Papadakis' Calculation for Tom; with
the fact that a Tom; matrix in an ideal J is related to Tom; matrix
in the ideal J via a sequence of elementary row and column
operations.

PROPOSITION For all t with 1 < t < 3, the R//-module
Homg//(J:/1, R/1) is generated by the two elements i; and ¢..
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PROPOSITION For all t,s with 1 <t,s <3 and t # s, it holds
that
os(Js/1) C Je/1.

PROPOSITION For all t,s with 1 < t,s <3 and t # s, there
exists a homogeneous element Ay such that

¢s(p¢(p)) = Astp for all p € Jy /1.
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Let Ty, To, T3 be three new variables of degree 6.
DEFINITION We define as /,, the ideal
(N+(Tizo — ¢1(22), Tizz — ¢1(23), Tizs — P1(2z5), Tizr — p1(27),

Tozy — ¢2(21), Tozo — 92(22), Toza — P2(24), Tozs — 2(25),
T3z1 — ¢3(21), T3zo — ¢3(22), T3z3 — P3(23), T326 — $3(26),
TiTo — A, Ti T3 — A1z, ToT3 — Ag3)

of the polynomial ring R[ Ty, Ty, T3].

We set Ryn = R[T1, T2, T3]/ lun-
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PROPOSITION The homogeneous ideal /,, is a codimension 6
ideal with a minimal generating set of 20 elements.

THEOREM (P.) The ring Ry, is Gorenstein.
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APPLICATIONS
We now give two applications of the construction of Ryp,.

Theorem (P.) There exists a family of quasismooth, projectively
normal and projectively Gorenstein Fano 3-folds X c P(13,27),

1
nonsingular away from eight quotient singularities 5(1, 1,1), with
Hilbert series of the anticanonical ring

1 —20t* + 64t5 — 90¢% + 6410 — 2012 4 16
(1 — )31 —e2)7
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Theorem (P.) There exists a family of quasismooth, projectively
normal and projectively Gorenstein Fano 3-folds X C IP>(13, 25, 32),

1
nonsingular away from four quotient singularities 5(1, 1,1), and
1
two quotient singularities 5(1, 1,2), with Hilbert series of the
anticanonical ring

1— 116% — 8¢5 4 230 + 3267 — 1365 — 481 — 13¢10 4 32611 4 23612 — 813 — 11414 4 £18
(1 —t)3(1 — £2)5(1 — 3)2 '
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Construction of the first family:

Denote by k = C the field of complex numbers.

Let R,, be the ring and /,, the ideal which were defined above.
Substitute the variables (ci, ..., ¢5) with a general element of k3.
f?u,,: the ring which occurs from R, after this substitution.

lun: the ideal which obtained by the ideal /,, after this substitution.
In what follows we set

degree zj = degree T1 = degree T, = degree T3 = 2,

for all i with 1 </ <7.
Since Ry, is Gorenstein, Proj R, C P(21%) is a projectively
Gorenstein 3-fold.
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Let A = k[wa, wa, ws, 21, 22, 73, z5, T1, T2, T3] be the polynomial
ring over k with wy, wo, w3 variables of degree 1. Consider the
graded k-algebra homomorphism

O Ru[T1, T2, T3] = A

with
W(a) =2z, ¥(2) =2, v(z)=2z ¢(z)=~1,
W(zs) =25, Y(z6) = Y(zz)=H, »(T1)=Ti,
W(T2) =Tz, ¥(T3) = T3
where

fi=hzi+ bz + hz3+ lazs + Ty + le To + Ik T3 + lgwi +
lowiws + howiws + hiws + howows + w3,
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fo = hazi + hszo + hez3 + h7zs + hg Ty + ho To 4 o T3 + hiw? +
howiwo + lawiws + haw3 + hswaws 4 hews,

fy = h7z1 + hgzo + hozs + hozs + 1 T1 + ko To 4 ha Tz + haw? +
hswiwa + lewiws + w3 + hgwaws + hows

and (h,..., ko) € k39 are general.
Denote by @ the ideal of the ring A generated by the subset 1/1(7u,,).
Let X = V(Q) C P(13,27). Then X is a codimension 6

projectively Gorenstein 3-fold.

PROPOSITION The ring A/Q is an integral domain.
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PROPOSITION Consider X = V(Q) c P(13,27). Denote by
Xoone C A0 the affine cone over X. The scheme X e is smooth
outside the vertex of the cone.

PROPOSITION Consider the singular locus Z = V/(wy, wa, w3)
of the weighted projective space P(13,27). The intersection of X
with Z consists of exactly eight points which are quotient

1
singularities of type 5(1, 1,1) for X.
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PROPOSITION The minimal graded resolution of A/Q as
A-module is equal to

0 — A(—16) — A(—12)%° — A(-10)** — A(—8)%° — A(—6)*

S A(-4)P - A

Moreover, the canonical module of A/Q is isomorphic to
(A/Q)(—1) and the Hilbert series of A/Q as graded A-module is
equal to

1 —20t* 4 645 — 90t + 6410 — 20¢12 + 16
(L—1t)(1—e2) '
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Thank you for your attention!!




