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MAIN GOALS OF THE PRESENT TALK:

1) Introduction of Tom and Jerry triples unprojection format.

2) Use Tom and Jerry triples unprojection format for the
construction of two families of codimension 6 Fano 3-folds
described in the Graded Ring Database.
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PRELIMINARIES

ASSUMPTION All rings are commutative and with unit.

DEFINITION Assume A = [aij ] is an m ×m skewsymmetric
matrix,
(i.e., aji = −aij and aii = 0) with entries in a ring R.

If m = 2` then det A = f (aij)2.
The polynomial f (aij) is called the Pfaffian of the matrix A
and is denoted by Pf (A).
If m = 2` + 1 by Pfaffians of A we mean the set

{Pf (A1),Pf (A2), . . . ,Pf (Am)},

where Ai denotes the skewsymmetric submatrix of A obtained
by deleting the ith row and ith column of A.

V. Petrotou Tom & Jerry triples



EXAMPLE

For m = 2 :

Pf (
(

0 a12
−a12 0

)
) = a12

For m = 5:

Pf (


0 a12 a13 a14 a15
−a12 0 a23 a24 a25
−a13 −a23 0 a34 a35
−a14 −a24 −a34 0 a45
−a15 −a25 −a35 −a45 0

) =

= {Pf (A1),Pf (A2), . . . ,Pf (A5)}
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where,

Pf (A1) = a23a45 − a24a35 + a25a34,

Pf (A2) = a13a45 − a14a35 + a15a34,

Pf (A3) = a12a45 − a14a25 + a15a24,

Pf (A4) = a12a35 − a13a25 + a15a23,

Pf (A5) = a12a34 − a13a24 + a14a23.
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DEFINITION A Noetherian local ring R is a Gorenstein ring if
inj dimR R <∞.
More generally, a Noetherian ring R is called Gorenstein if for every
maximal ideal m of R the localization Rm is Gorenstein.

EXAMPLES OF GORENSTEIN RINGS

The anticanonical ring R =
⊕

m≥0
H0(X ,OX (−mKX )) of a

(smooth) Fano n-fold.
The canonical ring R =

⊕
m≥0

H0(X ,OX (mKX )) of a
(smooth) regular surface of general type.
The Stanley-Reisner ring of a simplicial sphere over any field.
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THEOREM Let R = k[x1, . . . , xm]/I be the polynomial ring in n
variables divided by a homogeneous ideal I.

(Serre) If codim I = 1 or 2 then

R is Gorenstein⇔ I is a complete intersection.

(Buchsbaum-Eisenbud (1977)) If codim I = 3 then
R is Gorenstein ⇔ I is generated by the 2n × 2n

Pfaffians of a skewsymmetric (2n + 1)× (2n + 1) matrix with
entries in k[x1, . . . , xm].

QUESTION Is there a structure theorem for codim I ≥ 4 ?
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A.Kustin & M.Milller (1983) introduced a procedure which
constructs more «complicated» Gorenstein rings from simpler
ones by increasing codimension. This procedure is called
Kustin-Miller unprojection.

M.Reid (1995) rediscovered what was essentially the same
procedure working with Gorenstein rings arising from K3
surfaces and 3-folds.
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UNPROJECTION REVIEW

Kustin-Miller unprojection

Assumptions of Kustin-Miller unprojection:
J ⊂ R codimension 1 ideal
R Gorenstein
R/J Gorenstein.

Codimension: increasing by one.
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Applying the functor HomR(−,R) to the following short exact
sequence

0→ J → R → R/J → 0

we get a corresponding long exact sequence.

Using duality theory, we obtain the exact sequence

0→ R → HomR(J ,R)→ R/J → 0

with the last nonzero map corresponding to the Poincaré residue
map of complex geometry.

Hence, there exists φ ∈ HomR(J ,R) such that together with the
inclusion i : J → R generate the R-module HomR(J ,R).
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DEFINITION (Reid) The Kustin-Miller unprojection ring of the
pair J ⊂ R is the ring

Unpr(J ,R) = graph of φ = R[T ]
(Tα− φ(α) : α ∈ J)

where T is a new variable.

THEOREM (Kustin-Miller, Reid-Papadakis) The ring Unpr(J ,R)
is Gorenstein.

REMARK: We have that Unpr(J ,R) has typically more
complicated structure than both R,R/J and is useful to
construct/analyse Gorenstein rings in terms of simpler ones.
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Parallel Kustin-Miller unprojection

Kustin-Miller unprojection can be used many times in an inductive
way to produce Gorenstein rings of arbitrary codimension, whose
properties are nevertheless controlled by just a few equations as a
number of new unprojection variables are adjoined.

APPLICATIONS
Construction of new interesting algebraic surfaces and 3-folds.
Explicit Birational Geometry.
(That is, writing down explicitly varieties, morphisms and
rational maps that Minimal Model Program says they exist.)
Algebraic Combinatorics.
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Neves and Papadakis (2013) develop a theory, which is called
parallel Kustin-Miller unprojection.

They set sufficient conditions on a positively graded Gorenstein
ring R and a finite set of codimension 1 ideals which ensure the
series of unprojections.

Furthermore, they give a simple and explicit description of the end
product ring which corresponds to the unprojection of the ideals.

This theory applies when all the unprojection ideals of a series of
unprojections correspond to ideals already present in the initial ring.
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TOM & JERRY TRIPLES

Assume J is a codimension 4 complete intersection ideal and M is
a 5× 5 skewsymmetric matrix.

DEFINITION
1 Assume 1 ≤ i ≤ 5. The matrix M is called Tomi in J if after

we delete the i-th row and i-th column of M the remaining
entries are elements of the codimension 4 ideal J .

2 Assume 1 ≤ i < j ≤ 5. The matrix M is called Jerryij in J if
all the entries of M that belong to the i-th row or i-th column
or j-th row or j-th column are elements of J .

REMARK In both cases the Pfaffian ideal of M is a subset of J .
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Papadakis’ Calculation for Tom (2004)

Let R = k[xk , zk ,mk
ij ] , where 1 ≤ k ≤ 4 , 2 ≤ i < j ≤ 5 , be a

polynomial ring. Set J = (z1, z2, z3, z4). Denote by

N =


0 x1 x2 x3 x4
−x1 0 m23 m24 m25
−x2 −m23 0 m34 m35
−x3 −m24 −m34 0 m45
−x4 −m25 −m35 −m45 0

,

where

mij =
4∑

k=1
mk

ijzk .

Let I be the ideal generated by the Pfaffians P0,P1,P2,P3,P4 of
N. It holds that I ⊂ J .
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Papadakis using multilinear and homological algebra calculated the
equations of the codimension 4 ring which occurs as unprojection
of the pair I ⊂ J .
More precisely, he calculated 4 polynomials gi for i = 1, . . . , 4
and defines the map φ by

φ : J/I → R/I, zi + I 7→ gi + I.

Moreover, he proved that HomR/I(J/I,R/I) is generated as R/I-
module by the inclusion map i and φ. From the theory it follows
that the ideal

(P0,P1,P2,P3,P4,Tz1 − g1,Tz2 − g2,Tz3 − g3,Tz4 − g4)

of the polynomial ring R[T ] is Gorenstein of codimension 4.
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We will now define Tom & Jerry triples.

Let

M =


0 m12 m13 m14 m15
−m12 0 m23 m24 m25
−m13 −m23 0 m34 m35
−m14 −m24 −m34 0 m45
−m15 −m25 −m35 −m45 0


be a 5× 5 skewsymmetric matrix and J1, J2, J3 be three complete
intersection ideals of codimension 4.
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Tom & Tom & Tom case

DEFINITION We say that M is a Tom1 + Tom2 + Tom3 in
J1, J2, J3 if the entries of M satisfy the following conditions:

m12 ∈ J3, m13 ∈ J2, m14,m15 ∈ J2 ∩ J3, m23 ∈ J1,
m24,m25 ∈ J1 ∩ J3, m34,m35 ∈ J1 ∩ J2, m45 ∈ J1 ∩ J2 ∩ J3.

REMARK Equivalently, the matrix M is Tom1 in J1, Tom2 in J2
and Tom3 in J3.

Similarly, we set conditions in the entries of M such that M is
Jerryij in J1, Jerrykl in J2 and Jerrymn in J3.
Tomi in J1, Tomj in J2 and Jerrykl in J3.
Tomi in J1, Jerryjk in J2 and Jerrylm in J3.
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We work over the polynomial ring R = k[zi , cj ], where 1 ≤ i ≤ 7
and 1 ≤ j ≤ 25. Denote by Tom(1,2,3), the following 5× 5
skewsymmetric matrix 0 c1z1+c2z2+c3z3+c4z6 c5z1+c6z2+c7z4+c8z5 c9z1+c10z2 c11z1+c12z2

0 c13z2+c14z3+c15z5+c16z7 c17z2+c18z3 c19z2+c20z3
0 c21z2+c22z5 c23z2+c24z5

−Sym 0 c25z2
0


which is Tom1+Tom2+Tom3 matrix in the ideals

J1 = (z2, z3, z5, z7), J2 = (z1, z2, z4, z5), J3 = (z1, z2, z3, z6).

Let I be the ideal generated by the Pfaffians of Tom(1,2,3).
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PROPOSITION
(i) For all t with 1 ≤ t ≤ 3, the ideal Jt/I is a codimension 1

homogeneous ideal of R/I with Gorenstein quotient.

(ii) For all t, s with 1 ≤ t < s ≤ 3, it holds that

codimR/I(Jt/I + Js/I) = 3.
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AIM: Compution of φt : Jt/I → R/I for all t with 1 ≤ t ≤ 3.

STRATEGY: We combine Papadakis’ Calculation for Tom1 with
the fact that a Tomi matrix in an ideal J is related to Tom1 matrix
in the ideal J via a sequence of elementary row and column
operations.

PROPOSITION For all t with 1 ≤ t ≤ 3, the R/I-module
HomR/I(Jt/I,R/I) is generated by the two elements it and φt .
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PROPOSITION For all t, s with 1 ≤ t, s ≤ 3 and t 6= s, it holds
that

φs(Js/I) ⊂ Jt/I.

PROPOSITION For all t, s with 1 ≤ t, s ≤ 3 and t 6= s, there
exists a homogeneous element Ast such that

φs(φt(p)) = Astp for all p ∈ Jt/I.
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Let T1,T2,T3 be three new variables of degree 6.

DEFINITION We define as Iun the ideal

(I) + (T1z2 − φ1(z2), T1z3 − φ1(z3), T1z5 − φ1(z5), T1z7 − φ1(z7),

T2z1 − φ2(z1), T2z2 − φ2(z2), T2z4 − φ2(z4),T2z5 − φ2(z5),

T3z1 − φ3(z1), T3z2 − φ3(z2), T3z3 − φ3(z3), T3z6 − φ3(z6),

T1T2 − A12, T1T3 − A13, T2T3 − A23)

of the polynomial ring R[T1,T2,T3].

We set Run = R[T1,T2,T3]/Iun.
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PROPOSITION The homogeneous ideal Iun is a codimension 6
ideal with a minimal generating set of 20 elements.

THEOREM (P.) The ring Run is Gorenstein.
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APPLICATIONS

We now give two applications of the construction of Run.

Theorem (P.) There exists a family of quasismooth, projectively
normal and projectively Gorenstein Fano 3-folds X ⊂ P(13, 27),
nonsingular away from eight quotient singularities 1

2(1, 1, 1), with
Hilbert series of the anticanonical ring

1 − 20t4 + 64t6 − 90t8 + 64t10 − 20t12 + t16

(1 − t)3(1 − t2)7 .
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Theorem (P.) There exists a family of quasismooth, projectively
normal and projectively Gorenstein Fano 3-folds X ⊂ P(13, 25, 32),
nonsingular away from four quotient singularities 1

2(1, 1, 1), and

two quotient singularities 1
3(1, 1, 2), with Hilbert series of the

anticanonical ring
1 − 11t4 − 8t5 + 23t6 + 32t7 − 13t8 − 48t9 − 13t10 + 32t11 + 23t12 − 8t13 − 11t14 + t18

(1 − t)3(1 − t2)5(1 − t3)2 .
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Construction of the first family:

Denote by k = C the field of complex numbers.
Let Run be the ring and Iun the ideal which were defined above.
Substitute the variables (c1, . . . , c25) with a general element of k25.
R̂un: the ring which occurs from Run after this substitution.
Îun: the ideal which obtained by the ideal Iun after this substitution.
In what follows we set

degree zi = degree T1 = degree T2 = degree T3 = 2,

for all i with 1 ≤ i ≤ 7.
Since Run is Gorenstein, Proj R̂un ⊂ P(210) is a projectively
Gorenstein 3-fold.

V. Petrotou Tom & Jerry triples



Let A = k[w1,w2,w3, z1, z2, z3, z5,T1,T2,T3] be the polynomial
ring over k with w1,w2,w3 variables of degree 1. Consider the
graded k-algebra homomorphism

ψ : R̂un[T1,T2,T3]→ A

with

ψ(z1) = z1, ψ(z2) = z2, ψ(z3) = z3, ψ(z4) = f1,

ψ(z5) = z5, ψ(z6) = f2, ψ(z7) = f3, ψ(T1) = T1,

ψ(T2) = T2, ψ(T3) = T3

where
f1 = l1z1 + l2z2 + l3z3 + l4z5 + l5T1 + l6T2 + l7T3 + l8w2

1 +
l9w1w2 + l10w1w3 + l11w2

2 + l12w2w3 + l13w2
3 ,
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f2 = l14z1 + l15z2 + l16z3 + l17z5 + l18T1 + l19T2 + l20T3 + l21w2
1 +

l22w1w2 + l23w1w3 + l24w2
2 + l25w2w3 + l26w2

3 ,

f3 = l27z1 + l28z2 + l29z3 + l30z5 + l31T1 + l32T2 + l33T3 + l34w2
1 +

l35w1w2 + l36w1w3 + l37w2
2 + l38w2w3 + l39w2

3

and (l1, . . . , l39) ∈ k39 are general.

Denote by Q the ideal of the ring A generated by the subset ψ(̂Iun).
Let X = V (Q) ⊂ P(13, 27). Then X is a codimension 6
projectively Gorenstein 3-fold.

PROPOSITION The ring A/Q is an integral domain.
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PROPOSITION Consider X = V (Q) ⊂ P(13, 27). Denote by
Xcone ⊂ A10 the affine cone over X . The scheme Xcone is smooth
outside the vertex of the cone.

PROPOSITION Consider the singular locus Z = V (w1,w2,w3)
of the weighted projective space P(13, 27). The intersection of X
with Z consists of exactly eight points which are quotient
singularities of type 1

2(1, 1, 1) for X .
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PROPOSITION The minimal graded resolution of A/Q as
A-module is equal to

0→ A(−16)→ A(−12)20 → A(−10)64 → A(−8)90 → A(−6)64

→ A(−4)20 → A

Moreover, the canonical module of A/Q is isomorphic to
(A/Q)(−1) and the Hilbert series of A/Q as graded A-module is
equal to

1− 20t4 + 64t6 − 90t8 + 64t10 − 20t12 + t16

(1− t)3(1− t2)7 .
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Thank you for your attention!!
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