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Birational Geometry



I
Rationality

An algebraic variety X is rational over C if C(X ) ∼= C(x1, . . . , xn), where n = dimC X .

Example

Let X ⊂ P2 be a smooth cubic curve.

I Hodge numbers: h1,0(X ) = 1.

I Since h1,0(X ) ̸= 0, X is not rational.

Example (Surfaces (dim 2))

A smooth cubic X ⊂ P3 is rational.
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Intermediate Jacobian and Cubic Threefolds

Let X ⊂ P4 be a smooth cubic threefold.

Intermediate Jacobian (Clemens-Griffiths)
For X with dimC X = 3:

J2(X ) :=
(H2,1)∗

H3(X ,Z)
Key properties:

I Principally polarized abelian variety of dimension 1
2b3(X ) = 5

I Obstruction to rationality: J2(X ) is not isomorphic to Jac(C) for any curve C

Example (Hodge Diamond)

1
1

5 5
1
1

For cubic threefolds: hp,q = 0 if p ̸= q and p + q ̸= 3.
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Clemens-Griffiths Irrationality Criterion

Theorem (Clemens-Griffiths (1972))

A smooth cubic threefold X ⊂ P4 is irrational because:

I Its intermediate Jacobian J2(X ) is the Jacobian of a curve only if X is a blowup
of P3.

I For cubic threefolds, J2(X ) decomposes as a product of Jacobians of curves ⇐⇒
X is rational.

Key Computation

For X ⊂ P4:
H2,1(X ) ∼= H1,2(X ) ∼= C5, H3(X ,Z) ∼= Z10

Thus, J2(X ) is a 5-dimensional abelian variety not isogenous to any product of curve
Jacobians.
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Known Methods in Birational Geometry

I Hodge-Theoretic Methods

I Intermediate Jacobian (Clemens-Griffiths).
I Brauer group (Artin-Mumford).

I Geometric Methods

I Birational automorphisms (Iskovskikh-Manin).
I Degenerations (Voisin, Kollár, Pirutka).

I Analytic Methods

I Multiplier ideal sheaves (Nadel, Ein-Lazarsfeld).
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Example: Cubic Fourfold (dim 4)

Let X ⊂ P5 be a smooth cubic fourfold.

I Hodge diamond:
1
1

1 21 1
1
1

I Is X rational? Katzarkov-Kontsevich-Pantev-Yu: no.
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I
Homological Mirror Symmetry (HMS)

Statement: For a smooth projective variety X , HMS relates:

I B-model: Derived category Db
coh(X ).

I A-model: Fukaya-Seidel category FS(Y ,W ).

Example (Mirror of P2)

Db(P2)←→ FS

(
C2,W = x + y +

1
xy

)
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Hodge Structures in HMS

B-model (de Rham cohomology)

for P2 :

1
0 0

0 1 0
0 0

1

for the blow-up of P2 in a point :

1
0 0

0 2 0
0 0

1

for the blow-up of P2 in 6 points :

1
0 0

0 7 0
0 0

1

A-model (LG mirror)

ncHodge structure1 on periodic cyclic homology links A/B-models.

1Non-commutative Hodge structure encoding GW invariants.
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Monodromy Operator and Rationality

Let X → Zt be a family of smooth threefolds.

Monodromy Action

The monodromy operator acts on H2(Zt ,Z):
µ : H2(Zt ,Z)→ H2(Zt ,Z), µ = diag(1, ϵ, ϵ2), ϵ3 = 1.

Example (Cubic Threefold)

For X ⊂ P4, µ is non-nilpotent =⇒ X is irrational (Clemens-Griffiths).

Theorem (Katzarkov-Przyjalkowski)

Let X be a smooth Fano threefold with Pic(X ) ∼= Z and X ̸≃ P3. Then X is rational
if and only if the monodromy operator µ is nilpotent.
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Three-Dimensional Cubic: LG Mirror

The LG mirror of a cubic threefold X ⊂ P4 is the fibration by open K3 surfaces given
by the potential :

W =
(x + y + z)3

xyz
+ z on C3.

This family of K3 surfaces has 3 singular fibers - two fibers with ordinary double points
and one open-book singularity.

• ••

Let F be the perverse sheaf of vanishing cycles of the potential. Then,
dimH1(F) = 5, dimH2(F) = 4, dimH3(F) = 5.
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Quantum Cohomology and Decomposition

A+B

HdR+Eingevalues of Quantum Multiplication
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Splitting the Hodge Structure

If we further split the cohomology of X into generalized eigenspaces for the operator K
of quantum multiplication by c1(X ), or equivalently split the cohomology of F
according to the critical values of the potential, we obtain as a piece a Hodge
structure H which is exactly the Clemens-Griffiths invariant:

• x2 • x3• x1

critical values of LG model

= eigenvalues of K: x1, x2, x3

=⇒

Splitting of H∗(X ) = H+ (1) + (1)

1
1

5 5
1
1

H
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Theory of Atoms: Key Equation

Quantum differential equation:(
∂

∂u
−

1
u2 K +

1
u

G
)
ψ(u) = 0

I K: Quantum multiplication by c1(X ).

I G: Connection matrix (flat coordinates).
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Birational Invariants via Quantum Decomposition

Theorem (Katzarkov-Kontsevich-Pantev-Yu)
For a projective variety X :

I Decomposition: H∗(X ) splits into Hλi
, labeled by eigenvalues of K.

I Birational invariance: Elementary pieces Hλi
(modulo codimension ≥ 2) are bi-

rational invariants.

Applications

I Singular fibers of LG mirror ↔ eigenvalues of K.

I Integral Hodge structure on Hi (F) is computable via QH(X ).
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Atoms and Euler Fields



I
Hodge Subspace and Euler Field

I Let X be a complex projective variety. Consider the subspace of even Hodge
classes:

HHodge(X ) :=
⊕
i

(
H i,i (X ) ∩ H2i (X ,Q)

)
I This defines a purely even Frobenius manifold FX over K.

I The Euler field Eu ∈ Γ(FX ,TFX
) is:

Eu = c1(TX ) +
∑
i

deg ∆i ̸=2

deg∆i − 2
2

ti∆i

I At a generic p ∈ FX , the spectrum of Eu ⋆ · gives a µ-fold spectral cover.

Definition (Atoms)
AtomsX are the connected components of this spectral cover.

I

I Key Example: If KX is nef, AtomsX is trivial (quantum product preserves
H≥•(X )).
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Asymptotics of the Quantum Differential Equation

Quantum differential equation (QDE):(
∂

∂u
−

K
u2 +

G
u

)
ψ = 0

Eigenvalues: Asymptotic solutions ψ(u) ∼ eσ/u correspond to eigenvalues σ of K ⋆ ·.

Theorem (Non-rationality criterion)

Let X be a Fano hypersurface of degree d in PN−1. Define:

δ := dimX − 2 ·
N − d

d
.

If δ > dimX − 2, then X is not rational.

Example (4D Quartic)

X ⊂ P5, d = 4, N = 6:

δ = 4− 2 ·
6− 4

4
= 3 > 2 (dimX − 2 = 2) =⇒ not rational.

Example (5D quartic)

δ = 5− 2
(

7− 4
4

)
= 5− 3

1
2
> 3

Example (3D cubic)
For the three-dimensional generic cubic:

δ = 3− 2
(

5− 3
3

)
=

5
3
> 3− 2 =⇒ not rational.
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Asymptotics and Steenbrink spectrum

Asymptotic of the
Quantum Differ-
ential Equation

Steenbrink
Spectrum

of the LG Model

Central Charges
(CFT)
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2-Dimensional Cubic Xk

Xk a 2-dimensional cubic with Pic(Xk ) ∼= Z2.

P1 #sing = 8− deg = 5

|2KP1 + 5| ̸= 0

On the LG side: H0 + H2 + H4 = Z9, Steenbrink=0.
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Example: Hypersurface Model

Setup:

I Let Xgeom ⊂ (P1)4 be a smooth hypersurface of degree (1, 1, 1, 1) over an
algebraically closed field k.

I Key Fact: Xgeom is the blowup of (P1)3 at an elliptic curve E .

Atomic Structure

I 8 simple "point-like" atoms.

I 1 atom αE linked to E .

New Setup:

I Define X over a non-closed field k.
I Assume the Galois group mixes the 4 factors of (P1)4.

Key Calculation
At the "naive" point qi = 1, tj = 0:

Eigenvalues of Eu ⋆ · =

 λ1︸︷︷︸
mult 1

, λ2︸︷︷︸
mult 4

, λ3︸︷︷︸
mult 7


I The third piece has Hodge numbers: 5 (middle), 1 (top/bottom).

I Only 2 algebraic cycles defined over k.
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Thank you!
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