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 (Torsten Bringmann) Hidden sector freeze-out ‒ 2

The standard treatmentTM

Abundance of species    initially in equilibrium with SM:

Torsten Bringmann, Stockholm

The WIMP “miracle”

In the early universe, the WIMP
number density n is determined by
the Boltzmann equation

dn

dt
+ 3Hn = −⟨σv⟩

(

n2 − n2
eq

)

Once the interaction rate falls be-
hind the expansion rate of the uni-
verse, WIMPs decouple from the
thermal bath. Today, their relic
density is then given by: Jungman, Kamionkowski & Griest, PR ’96

ΩWIMPh2 ∼3·10−27cm3s−1

⟨σv⟩ = O(0.1) [for interaction strengths of the weak type]

New Gamma-Ray Contributions – p.9/32

(thermal average)
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Fig.: Jungman, Kamionkowski & Griest, PR’96

��v⇥ :

“Freeze-out” when annihilation 
rate falls behind expansion rate

Relic density (today):

for weak-scale 
interactions!

��h2 � 3 · 10�27cm3/s
⇥�v⇤ � O(0.1)

n�eq

WIMP DM is seriously pressured, 
but not (yet) ‘dead’ !

Arcadi+, EPJC ’18
Athron+, EPJC ’19

(+ many more)

= WIMP ‘miracle’

(Gelmini & Gondolo, NPB ’91)

�
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Ingredients for numerical evaluation

[See also Steigman+, PRD ’12]

Radiation domination: 

3

where A(T ) = 1 in full equilibrium, i.e. before chemical
freeze-out. This is motivated by the fact DM-SM scatter-
ing typically proceeds at a much faster rate than DM-DM
annihilation, because the number density of relativistic
SM particles is not Boltzmann suppressed like that of the
non-relativistic DM particles. In that case, DM particles
are kept in local thermal equilibrium even when the an-
nihilation rate starts to fall behind the Hubble expansion
and chemical equilibrium can no longer be maintained.

Approximating furthermore f�,eq(E) ' exp(�E/T ),
i.e. neglecting the impact of quantum statistics for non-
relativistic particles, five of the six integrals in Eq. (9) can
be performed analytically. This by now standard treat-
ment, as established by Gondolo & Gelmini [9], results
in the often-quoted expression
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+ 3Hn� = h�vi
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Here, Ki are the modified Bessel functions of order i,
and we have introduced s̃ ⌘ s/(4m2

�). While there
are various ways to state the final result for h�vi, the
form given above stresses that physically one should in-
deed think of this quantity as a thermal average of �vlab
rather than any other combination of cross section and
velocity (in the sense that we strictly have h�vi = �vlab

for �vlab =const; for e.g. �vCMS =const, on the other
hand, with vCMS = 2(1 � 4m2

�/s), we instead have
h�vi ! �vCMS only in the limit T ! 0).

By introducing dimensionless variables

x ⌘ m�/T , (15)

Y ⌘ n�/s , (16)

and assuming entropy conservation, finally, the above
Boltzmann equation for the number density, Eq. (12),
can be brought into an alternative form that is particu-
larly suitable for numerical integration:

Y
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Here, s = (2⇡2
/45)gse↵T

3 denotes the entropy density,
0
⌘ d/dx and H̃ ⌘ H/ [1 + g̃(x)] where
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The value of Y today, Y0 ⌘ Y (x ! 1), can then be
related to the observed DM abundance by [9]

⌦�h
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Y0 . (19)

We note that Eq. (17) is the basis for the implementation
of relic density calculations in all major numerical codes
[23–29].

B. Coupled Boltzmann equations

The main assumption that enters the standard treat-
ment reviewed above is contained in Eq. (11), i.e. the re-
quirement that during chemical freeze-out, or in fact dur-
ing any period when the comoving DM density changes,
local thermal equilibrium with the heat bath is main-
tained. If that assumption is not justified, one has in
principle to solve the full Boltzmann equation in phase
space, Eq. (1), numerically (see next subsection). As first
pointed out in Ref. [30], however, it sometimes su�ces to
take into account the second moment of Eq. (1), instead
of only the zeroth moment as in the previous subsection.
This leads to a relatively simple coupled system of di↵er-
ential equations that generalizes Eq. (17).
The starting point is to define, in analogy to Y for

the zeroth moment of f�, a dimensionless version of the
second moment of f�:
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For a thermal distribution, the DM particles thus have a
temperature

T� = ys
2/3

/m� . (21)

We note that for non-thermal distributions we could still
view this last equation as an alternative definition of the
DM ‘temperature’, or velocity dispersion, in terms of the
second moment of f� as introduced above. This allows,
e.g., a convenient characterization of kinetic decoupling
as the time when T� no longer equals T but instead starts
to approach the asymptotic scaling of T� = Tkd(a/aeq)�2

for highly non-relativistic DM [12, 18].
Integrating Eq. (1) over g�

R
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Thermal average:

Number density in EQ:

3

where A(T ) = 1 in full equilibrium, i.e. before chemical
freeze-out. This is motivated by the fact DM-SM scatter-
ing typically proceeds at a much faster rate than DM-DM
annihilation, because the number density of relativistic
SM particles is not Boltzmann suppressed like that of the
non-relativistic DM particles. In that case, DM particles
are kept in local thermal equilibrium even when the an-
nihilation rate starts to fall behind the Hubble expansion
and chemical equilibrium can no longer be maintained.

Approximating furthermore f�,eq(E) ' exp(�E/T ),
i.e. neglecting the impact of quantum statistics for non-
relativistic particles, five of the six integrals in Eq. (9) can
be performed analytically. This by now standard treat-
ment, as established by Gondolo & Gelmini [9], results
in the often-quoted expression
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Here, Ki are the modified Bessel functions of order i,
and we have introduced s̃ ⌘ s/(4m2

�). While there
are various ways to state the final result for h�vi, the
form given above stresses that physically one should in-
deed think of this quantity as a thermal average of �vlab
rather than any other combination of cross section and
velocity (in the sense that we strictly have h�vi = �vlab

for �vlab =const; for e.g. �vCMS =const, on the other
hand, with vCMS = 2(1 � 4m2

�/s), we instead have
h�vi ! �vCMS only in the limit T ! 0).

By introducing dimensionless variables

x ⌘ m�/T , (15)

Y ⌘ n�/s , (16)

and assuming entropy conservation, finally, the above
Boltzmann equation for the number density, Eq. (12),
can be brought into an alternative form that is particu-
larly suitable for numerical integration:
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Here, s = (2⇡2
/45)gse↵T

3 denotes the entropy density,
0
⌘ d/dx and H̃ ⌘ H/ [1 + g̃(x)] where

g̃ ⌘
1

3

T

g
s
e↵

dg
s
e↵

dT
. (18)

The value of Y today, Y0 ⌘ Y (x ! 1), can then be
related to the observed DM abundance by [9]
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We note that Eq. (17) is the basis for the implementation
of relic density calculations in all major numerical codes
[23–29].

B. Coupled Boltzmann equations

The main assumption that enters the standard treat-
ment reviewed above is contained in Eq. (11), i.e. the re-
quirement that during chemical freeze-out, or in fact dur-
ing any period when the comoving DM density changes,
local thermal equilibrium with the heat bath is main-
tained. If that assumption is not justified, one has in
principle to solve the full Boltzmann equation in phase
space, Eq. (1), numerically (see next subsection). As first
pointed out in Ref. [30], however, it sometimes su�ces to
take into account the second moment of Eq. (1), instead
of only the zeroth moment as in the previous subsection.
This leads to a relatively simple coupled system of di↵er-
ential equations that generalizes Eq. (17).
The starting point is to define, in analogy to Y for

the zeroth moment of f�, a dimensionless version of the
second moment of f�:
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For a thermal distribution, the DM particles thus have a
temperature

T� = ys
2/3

/m� . (21)

We note that for non-thermal distributions we could still
view this last equation as an alternative definition of the
DM ‘temperature’, or velocity dispersion, in terms of the
second moment of f� as introduced above. This allows,
e.g., a convenient characterization of kinetic decoupling
as the time when T� no longer equals T but instead starts
to approach the asymptotic scaling of T� = Tkd(a/aeq)�2

for highly non-relativistic DM [12, 18].
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(Often forgotten) assumptions

[         gives Eq for number density      ]
Boltzmann equation at phase-space level: 

E(�t �Hp ·⇥p)f� = C[f�]

�
d3p n�
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Expansion 
(in FRW spacetime) Interactions with SM:

�SM

�SM

�

SM

�

SM

DM becomes non-relativistic while still in (full) EQ: 
f eq
� = e�E/T ⌧ 1
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I)

DM remains in kinetic EQ during freeze-out
f� = e�(E�µ�)/T = eµ�/T f eq

�
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µ�/m� ⌧ 1
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II)

⌧
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SM particles never build up significant chemical potentials
fSM = e�ESM/T
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III)
ESM = E�
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(energy conservation:               )
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Generic dark sector models

Standard 
Model

Dark 
Sector

SU(3)c ⇥ SU(2)L ⇥ U(1)Y
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e.g. U(1)X ⇥ ...
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Dark matter
Dark radiation                    
(‘sterile neutrinos’, ‘dark photons’, …)

SM particles

e.g. LHiggs � |�|2|⇥|2

A ‘portal’ typically still ensures 
thermalisation at high temperatures
Separate entropy conservation after decoupling

 Tphoton 6= Tdark
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FIG. 1. The value of a constant thermally averaged anni-
hilation rate, h�vi, resulting in a relic density of Majorana
(orange) or Dirac (blue) DM particles matching the observed
cosmological DM abundance. Solid lines show the case of DM
in equilibrium with the SM until freeze-out (shaded areas in-
dicate the e↵ect of varying ⌦DMh2 within 3� [1]). Dashed
(dotted lines) show the case of DM in equilibrium with a hid-
den sector containing gS = 1 (gS = 5) light scalar degrees of
freedom (with µS = 0), which decoupled from the standard
model at T � max[m�, mt]. See Appendix A for correspond-
ing results for p-wave annihilation.

up significant chemical potentials. As we will see shortly,

both assumptions can be violated in decoupled sectors.

Before doing so, let us first solve Eq. (1) in the stan-

dard scenario. In Fig. 1 we indicate with solid lines the

value of h�vi (assuming a constant value of this quan-

tity around chemical decoupling) that is needed to ob-

tain a relic density matching the observed cosmological

DM abundance of ⌦DMh
2

= 0.120 [1]. The orange solid

lines show the case of Majorana DM (with g� = 2 and

⌦� = ⌦�̄ = ⌦DM), updating the conventionally quoted

‘thermal relic cross section’ in Ref. [37] with a more re-

cent measurement of ⌦DM and recent lattice QCD results

for the evolution of d.o.f. in the early universe [40] (as im-

plemented in DarkSUSY [14]). For comparison, the blue

lines indicate the slightly less standard case of Dirac DM

(with g� = g�̄ = 2 and ⌦� = ⌦�̄ = ⌦DM/2) to stress

the not typically appreciated fact that the required value

of h�vi is not exactly twice as large as in the Majorana

case.

A secluded dark sector.— The idea [18–22, 26] that

DM could be interacting only relatively weakly with the

SM, but much more strongly with itself or other particles

in a secluded dark sector (DS), has received significant

attention [29, 35, 41–46]. In such scenarios, both sectors

may well have been in thermal contact at high temper-

ature, until they decoupled at a temperature Tdec. This

results in a non-trivial evolution of the temperature ratio

⇠ ⌘ T�/T . As long as the DM interactions with at least

one massless DS species S are e�cient enough to estab-

lish thermal equilibrium, entropy is conserved separately

in the two sectors and the DS temperature evolves with

the e↵ective number of relativistic entropy d.o.f., g
SM,DS
⇤ ,

as

⇠(T ) ⌘ T�(T )

T
=

⇥
g
SM
⇤ (T )/g

SM
⇤ (Tdec)

⇤ 1
3

[gDS
⇤ (T )/gDS

⇤ (Tdec)]
1
3

. (3)

For a precise description of the freeze-out process of �

in such a secluded DS the standard Boltzmann equation

(1) then needs to be adapted at three places: both i)
the equilibrium density neq and ii) the thermal average

h�vi must be evaluated at T� rather than the SM tem-

perature T , and iii) the Hubble rate must be increased

to take into account the additional energy content resid-

ing in the DS. During radiation domination, in partic-

ular, this means that H
2

= (8⇡
3
/90)ge↵M

�2
Pl T

4
, where

ge↵ ' gSM + (
P

b gb +
7
8

P
f gf )⇠

4
and the sum runs over

the internal d.o.f. of all fully relativistic DS bosons (b)

and fermions (f) (in our numerical treatment, we always

use the full expression for ge↵). To the best of our knowl-

edge, precision calculations of the relic density in a de-

coupled DS that fully and self-consistently implement all

three e↵ects have not been performed previously. Here

we adapt the relic density routines of DarkSUSY to allow

calculations of this kind for a large range of DS models.

Model setup.— Let us for concreteness consider a

setup where the DS consists of massive fermions �, act-

ing as DM, and massless scalars S with µS = 0, con-

stituting the heat bath. We assume that the DS de-

coupled from the SM at high temperatures, such that

g
SM
⇤ (Tdec) = 106.75 and g

DS
⇤ (Tdec) = gS + (7/4)N� in

Eq. (3), where N� = 1 (N� = 2) for Majorana (Dirac)

DM. In Fig. 1 we show the ‘thermal’ annihilation cross

section for ��̄ ! SS in such a scenario, for di↵erent val-

ues of gS . The fact that this di↵ers significantly from the

standard case, in comparison to the observational uncer-

tainty in the cosmological DM abundance also indicated

in the figure, constitutes our first main result. It is worth

stressing that this updated relic density calculation di-

rectly applies to a large number of DS models where an-

nihilation proceeds via an s-wave [20, 26, 29, 41, 47–50]

(see Appendix A for corresponding results in the case of

p-wave annihilation).

To understand the behaviour of the curves shown in

Fig. 1, let us first recall that we consider here a constant

h�vi – which by definition is not a↵ected by a change in

⇠. For gS = 1, furthermore, the change in ge↵ and hence

the Hubble rate has only a subdominant e↵ect (but be-

comes somewhat more important for gS = 5). The main

e↵ect visible in the figure thus originates from changing

n�,eq(x) ! n�,eq(x/⇠). For large DM masses and hence

Let’s study a simple set-up for concreteness:
only fermionic DM (   ) and a scalar (   ) in dark sector (with                 )

decoupling at high temperatures: 

(directly) afterwards EQ in DS through 

�
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FIG. 1. The value of a constant thermally averaged anni-
hilation rate, h�vi, resulting in a relic density of Majorana
(orange) or Dirac (blue) DM particles matching the observed
cosmological DM abundance. Solid lines show the case of DM
in equilibrium with the SM until freeze-out (shaded areas in-
dicate the e↵ect of varying ⌦DMh2 within 3� [1]). Dashed
(dotted lines) show the case of DM in equilibrium with a hid-
den sector containing gS = 1 (gS = 5) light scalar degrees of
freedom (with µS = 0), which decoupled from the standard
model at T � max[m�, mt]. See Appendix A for correspond-
ing results for p-wave annihilation.

up significant chemical potentials. As we will see shortly,

both assumptions can be violated in decoupled sectors.

Before doing so, let us first solve Eq. (1) in the stan-

dard scenario. In Fig. 1 we indicate with solid lines the

value of h�vi (assuming a constant value of this quan-

tity around chemical decoupling) that is needed to ob-

tain a relic density matching the observed cosmological

DM abundance of ⌦DMh
2

= 0.120 [1]. The orange solid

lines show the case of Majorana DM (with g� = 2 and

⌦� = ⌦�̄ = ⌦DM), updating the conventionally quoted

‘thermal relic cross section’ in Ref. [37] with a more re-

cent measurement of ⌦DM and recent lattice QCD results

for the evolution of d.o.f. in the early universe [40] (as im-

plemented in DarkSUSY [14]). For comparison, the blue

lines indicate the slightly less standard case of Dirac DM

(with g� = g�̄ = 2 and ⌦� = ⌦�̄ = ⌦DM/2) to stress

the not typically appreciated fact that the required value

of h�vi is not exactly twice as large as in the Majorana

case.

A secluded dark sector.— The idea [18–22, 26] that

DM could be interacting only relatively weakly with the

SM, but much more strongly with itself or other particles

in a secluded dark sector (DS), has received significant

attention [29, 35, 41–46]. In such scenarios, both sectors

may well have been in thermal contact at high temper-

ature, until they decoupled at a temperature Tdec. This

results in a non-trivial evolution of the temperature ratio

⇠ ⌘ T�/T . As long as the DM interactions with at least

one massless DS species S are e�cient enough to estab-

lish thermal equilibrium, entropy is conserved separately

in the two sectors and the DS temperature evolves with

the e↵ective number of relativistic entropy d.o.f., g
SM,DS
⇤ ,

as

⇠(T ) ⌘ T�(T )

T
=

⇥
g
SM
⇤ (T )/g

SM
⇤ (Tdec)

⇤ 1
3

[gDS
⇤ (T )/gDS

⇤ (Tdec)]
1
3

. (3)

For a precise description of the freeze-out process of �

in such a secluded DS the standard Boltzmann equation

(1) then needs to be adapted at three places: both i)
the equilibrium density neq and ii) the thermal average

h�vi must be evaluated at T� rather than the SM tem-

perature T , and iii) the Hubble rate must be increased

to take into account the additional energy content resid-

ing in the DS. During radiation domination, in partic-

ular, this means that H
2

= (8⇡
3
/90)ge↵M

�2
Pl T

4
, where

ge↵ ' gSM + (
P

b gb +
7
8

P
f gf )⇠

4
and the sum runs over

the internal d.o.f. of all fully relativistic DS bosons (b)

and fermions (f) (in our numerical treatment, we always

use the full expression for ge↵). To the best of our knowl-

edge, precision calculations of the relic density in a de-

coupled DS that fully and self-consistently implement all

three e↵ects have not been performed previously. Here

we adapt the relic density routines of DarkSUSY to allow

calculations of this kind for a large range of DS models.

Model setup.— Let us for concreteness consider a

setup where the DS consists of massive fermions �, act-

ing as DM, and massless scalars S with µS = 0, con-

stituting the heat bath. We assume that the DS de-

coupled from the SM at high temperatures, such that

g
SM
⇤ (Tdec) = 106.75 and g

DS
⇤ (Tdec) = gS + (7/4)N� in

Eq. (3), where N� = 1 (N� = 2) for Majorana (Dirac)

DM. In Fig. 1 we show the ‘thermal’ annihilation cross

section for ��̄ ! SS in such a scenario, for di↵erent val-

ues of gS . The fact that this di↵ers significantly from the

standard case, in comparison to the observational uncer-

tainty in the cosmological DM abundance also indicated

in the figure, constitutes our first main result. It is worth

stressing that this updated relic density calculation di-

rectly applies to a large number of DS models where an-

nihilation proceeds via an s-wave [20, 26, 29, 41, 47–50]

(see Appendix A for corresponding results in the case of

p-wave annihilation).

To understand the behaviour of the curves shown in

Fig. 1, let us first recall that we consider here a constant

h�vi – which by definition is not a↵ected by a change in

⇠. For gS = 1, furthermore, the change in ge↵ and hence

the Hubble rate has only a subdominant e↵ect (but be-

comes somewhat more important for gS = 5). The main

e↵ect visible in the figure thus originates from changing

n�,eq(x) ! n�,eq(x/⇠). For large DM masses and hence

Can use same Boltzmann equation for     , after changing

3

where A(T ) = 1 in full equilibrium, i.e. before chemical
freeze-out. This is motivated by the fact DM-SM scatter-
ing typically proceeds at a much faster rate than DM-DM
annihilation, because the number density of relativistic
SM particles is not Boltzmann suppressed like that of the
non-relativistic DM particles. In that case, DM particles
are kept in local thermal equilibrium even when the an-
nihilation rate starts to fall behind the Hubble expansion
and chemical equilibrium can no longer be maintained.

Approximating furthermore f�,eq(E) ' exp(�E/T ),
i.e. neglecting the impact of quantum statistics for non-
relativistic particles, five of the six integrals in Eq. (9) can
be performed analytically. This by now standard treat-
ment, as established by Gondolo & Gelmini [9], results
in the often-quoted expression

dn�

dt
+ 3Hn� = h�vi

�
n
2
�,eq � n

2
�

�
, (12)

where n�,eq = g�m
2
�TK2(m�/T )/(2⇡2) and

h�vi ⌘
g
2
�

n2
�,eq

Z
d
3
p

(2⇡)3
d
3
p̃

(2⇡)3
�v�̄�!f̄ff�,eq(p)f�,eq(p̃)

(13)

=

Z 1

1
ds̃��̄�!f̄fvlab

2m�

p
s̃�1(2s̃�1)K1

⇣
2
p
s̃m�

T

⌘

TK2
2(m�/T )

.

(14)

Here, Ki are the modified Bessel functions of order i,
and we have introduced s̃ ⌘ s/(4m2

�). While there
are various ways to state the final result for h�vi, the
form given above stresses that physically one should in-
deed think of this quantity as a thermal average of �vlab
rather than any other combination of cross section and
velocity (in the sense that we strictly have h�vi = �vlab

for �vlab =const; for e.g. �vCMS =const, on the other
hand, with vCMS = 2(1 � 4m2

�/s), we instead have
h�vi ! �vCMS only in the limit T ! 0).

By introducing dimensionless variables

x ⌘ m�/T , (15)

Y ⌘ n�/s , (16)

and assuming entropy conservation, finally, the above
Boltzmann equation for the number density, Eq. (12),
can be brought into an alternative form that is particu-
larly suitable for numerical integration:

Y
0

Y
=

sY

xH̃
h�vi

"
Y

2
eq

Y 2
� 1

#
. (17)

Here, s = (2⇡2
/45)gse↵T

3 denotes the entropy density,
0
⌘ d/dx and H̃ ⌘ H/ [1 + g̃(x)] where

g̃ ⌘
1

3

T

g
s
e↵

dg
s
e↵

dT
. (18)

The value of Y today, Y0 ⌘ Y (x ! 1), can then be
related to the observed DM abundance by [9]

⌦�h
2 = 2.755⇥ 1010

⇣
m�

100GeV

⌘✓
TCMB

2.726K

◆3

Y0 . (19)

We note that Eq. (17) is the basis for the implementation
of relic density calculations in all major numerical codes
[23–29].

B. Coupled Boltzmann equations

The main assumption that enters the standard treat-
ment reviewed above is contained in Eq. (11), i.e. the re-
quirement that during chemical freeze-out, or in fact dur-
ing any period when the comoving DM density changes,
local thermal equilibrium with the heat bath is main-
tained. If that assumption is not justified, one has in
principle to solve the full Boltzmann equation in phase
space, Eq. (1), numerically (see next subsection). As first
pointed out in Ref. [30], however, it sometimes su�ces to
take into account the second moment of Eq. (1), instead
of only the zeroth moment as in the previous subsection.
This leads to a relatively simple coupled system of di↵er-
ential equations that generalizes Eq. (17).
The starting point is to define, in analogy to Y for

the zeroth moment of f�, a dimensionless version of the
second moment of f�:

y ⌘
m�

3s2/3

⌧
p2

E

�
=

m�

3s2/3
g�

n�

Z
d
3
p

(2⇡)3
p2

E
f�(p) . (20)

For a thermal distribution, the DM particles thus have a
temperature

T� = ys
2/3

/m� . (21)

We note that for non-thermal distributions we could still
view this last equation as an alternative definition of the
DM ‘temperature’, or velocity dispersion, in terms of the
second moment of f� as introduced above. This allows,
e.g., a convenient characterization of kinetic decoupling
as the time when T� no longer equals T but instead starts
to approach the asymptotic scaling of T� = Tkd(a/aeq)�2

for highly non-relativistic DM [12, 18].
Integrating Eq. (1) over g�

R
d
3
p/(2⇡)3/E and

g�

R
d
3
p/(2⇡)3p2

/E
2, respectively, we find

Y
0

Y
=

m�

xH̃
C0 , (22)

y
0

y
=

m�

xH̃
C2 �

Y
0

Y
+

H

xH̃

hp
4
/E

3
i

3T�
, (23)

where

hp
4
/E

3
i ⌘ n

�1
� g�

Z
d
3
p

(2⇡)3
p4

E3
f�(p) (24)

H
2 =

8⇡G

3
⇢⌘8⇡3

G

90
ge↵T

4

<latexit sha1_base64="lyHWEdbYC0eoE6TsTfweFsVecE0="></latexit>

3

where A(T ) = 1 in full equilibrium, i.e. before chemical
freeze-out. This is motivated by the fact DM-SM scatter-
ing typically proceeds at a much faster rate than DM-DM
annihilation, because the number density of relativistic
SM particles is not Boltzmann suppressed like that of the
non-relativistic DM particles. In that case, DM particles
are kept in local thermal equilibrium even when the an-
nihilation rate starts to fall behind the Hubble expansion
and chemical equilibrium can no longer be maintained.

Approximating furthermore f�,eq(E) ' exp(�E/T ),
i.e. neglecting the impact of quantum statistics for non-
relativistic particles, five of the six integrals in Eq. (9) can
be performed analytically. This by now standard treat-
ment, as established by Gondolo & Gelmini [9], results
in the often-quoted expression

dn�

dt
+ 3Hn� = h�vi

�
n
2
�,eq � n

2
�

�
, (12)

where n�,eq = g�m
2
�TK2(m�/T )/(2⇡2) and

h�vi ⌘
g
2
�

n2
�,eq

Z
d
3
p

(2⇡)3
d
3
p̃

(2⇡)3
�v�̄�!f̄ff�,eq(p)f�,eq(p̃)

(13)

=

Z 1

1
ds̃��̄�!f̄fvlab

2m�

p
s̃�1(2s̃�1)K1

⇣
2
p
s̃m�

T

⌘

TK2
2(m�/T )

.

(14)

Here, Ki are the modified Bessel functions of order i,
and we have introduced s̃ ⌘ s/(4m2

�). While there
are various ways to state the final result for h�vi, the
form given above stresses that physically one should in-
deed think of this quantity as a thermal average of �vlab
rather than any other combination of cross section and
velocity (in the sense that we strictly have h�vi = �vlab

for �vlab =const; for e.g. �vCMS =const, on the other
hand, with vCMS = 2(1 � 4m2

�/s), we instead have
h�vi ! �vCMS only in the limit T ! 0).

By introducing dimensionless variables

x ⌘ m�/T , (15)

Y ⌘ n�/s , (16)

and assuming entropy conservation, finally, the above
Boltzmann equation for the number density, Eq. (12),
can be brought into an alternative form that is particu-
larly suitable for numerical integration:

Y
0

Y
=

sY

xH̃
h�vi

"
Y

2
eq

Y 2
� 1

#
. (17)

Here, s = (2⇡2
/45)gse↵T

3 denotes the entropy density,
0
⌘ d/dx and H̃ ⌘ H/ [1 + g̃(x)] where

g̃ ⌘
1

3

T

g
s
e↵

dg
s
e↵

dT
. (18)

The value of Y today, Y0 ⌘ Y (x ! 1), can then be
related to the observed DM abundance by [9]

⌦�h
2 = 2.755⇥ 1010

⇣
m�

100GeV

⌘✓
TCMB

2.726K

◆3

Y0 . (19)

We note that Eq. (17) is the basis for the implementation
of relic density calculations in all major numerical codes
[23–29].

B. Coupled Boltzmann equations

The main assumption that enters the standard treat-
ment reviewed above is contained in Eq. (11), i.e. the re-
quirement that during chemical freeze-out, or in fact dur-
ing any period when the comoving DM density changes,
local thermal equilibrium with the heat bath is main-
tained. If that assumption is not justified, one has in
principle to solve the full Boltzmann equation in phase
space, Eq. (1), numerically (see next subsection). As first
pointed out in Ref. [30], however, it sometimes su�ces to
take into account the second moment of Eq. (1), instead
of only the zeroth moment as in the previous subsection.
This leads to a relatively simple coupled system of di↵er-
ential equations that generalizes Eq. (17).
The starting point is to define, in analogy to Y for

the zeroth moment of f�, a dimensionless version of the
second moment of f�:

y ⌘
m�

3s2/3

⌧
p2

E

�
=

m�

3s2/3
g�

n�

Z
d
3
p

(2⇡)3
p2

E
f�(p) . (20)

For a thermal distribution, the DM particles thus have a
temperature

T� = ys
2/3

/m� . (21)

We note that for non-thermal distributions we could still
view this last equation as an alternative definition of the
DM ‘temperature’, or velocity dispersion, in terms of the
second moment of f� as introduced above. This allows,
e.g., a convenient characterization of kinetic decoupling
as the time when T� no longer equals T but instead starts
to approach the asymptotic scaling of T� = Tkd(a/aeq)�2

for highly non-relativistic DM [12, 18].
Integrating Eq. (1) over g�

R
d
3
p/(2⇡)3/E and

g�

R
d
3
p/(2⇡)3p2

/E
2, respectively, we find

Y
0

Y
=

m�

xH̃
C0 , (22)

y
0

y
=

m�

xH̃
C2 �

Y
0

Y
+

H

xH̃

hp
4
/E

3
i

3T�
, (23)

where

hp
4
/E

3
i ⌘ n

�1
� g�

Z
d
3
p

(2⇡)3
p4

E3
f�(p) (24)

h�vi
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p-wave annihilation
5

larly important for small mass splittings, where µS ' mS

makes it mandatory to include the full quantum statis-

tics for all particles. The commonly used assumption of

a Maxwell-Boltzmann distribution is, in other words, no

longer justified and leads to quantitatively wrong results

in the relic density calculation.

So far we have focussed on a fully secluded DS, in which

case the most prominent observables to test such models

are ⌦DM and �Ne↵ . It is however worth mentioning that

in many models there are additional tiny couplings to the

SM that would allow further experimental signatures. A

setup where hidden sector freeze-out can naturally oc-

cur while still allowing for su�ciently large couplings to

the SM to be probed by particle physics experiments,

e.g., are scalar or pseudoscalar mediators with Yukawa-

like coupling structure [30, 32, 33, 56–58]. Also indirect

DM searches for secluded dark sectors [59] provide a po-

tentially promising avenue, in particular for the strongly

enhanced annihilation rates necessary to accommodate

DM degenerate in mass with its annihilation products.

Conclusions.— In this work we have presented a

framework for precision calculations of DM freeze-out

in a secluded sector, matching the observational accu-

racy on the one hand, and the increasing demand for

consistent interpretations of phenomenological dark sec-

tor studies on the other hand. We have provided new

benchmark ‘thermal’ annihilation cross sections for rel-

ativistic heat bath particles, and demonstrated that the

di↵erence to the standard treatment can be even larger

for non-relativistic DM annihilation products. The lat-

ter case is intrinsically strongly model-dependent, and

will be studied in more detail elsewhere. Further inter-

esting extensions, not the least in view of the significant

model-building activity in these areas, would be to gen-

eralise the precision relic calculations presented here to

models where the DM particles in the hidden sector do

not obey a Z2 symmetry [60–62], are asymmetric [63]

or have a relic abundance set by freeze-in rather than

freeze-out [64, 65].
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FIG. 4. Same as Fig. 1 in the main text, but for p-wave
annihilation with �vlab = b v2

lab.

A. DM annihilation via p-wave

In the case of s-wave annihilation to massless final

states, the velocity-weighted annihilation cross section is

constant in the limit of small DM velocities, resulting in

h�vi = �vlab. This simplified ansatz for h�vi (neglecting

higher-order contributions in v, following common prac-

tice) has been presented in Fig. 1 in the main text, both

for DM annihilating to SM particles and for situations

in which the relic abundance is set via freeze-out in a

hidden sector.

Here we complement this by considering instead the

case of p-wave annihilation, which also has been fre-

quently considered for DS freeze-out production of

DM [29, 30, 32, 49, 56–58]. To describe such models, we

will again take a simplified ansatz for the cross section

by only keeping the leading term in the DM velocities,

�vlab = b v
2
lab , (7)

where we assume b to be constant. For the ther-

mally averaged cross section entering in the Boltz-

mann equation, Eq. (1), this implies h�vi = b ⇥⇥
6(x/⇠)

�1 � 27(x/⇠)
�2

+ ...
⇤
. The value of b resulting in

the correct DM relic abundance in this case is shown in

Fig. 4, for the same choice of DM models (Dirac and Ma-

jorana fermions, respectively) and heat bath components

as in Fig. 1 in the main text.

In comparison, the main di↵erences in these figures

are that i) the value of b resulting in the correct relic

density is about one order of magnitude larger than the

value of h�vi required in the case of s-wave annihilation

and that ii) this ‘thermal’ value of b rises faster with

m� than its s-wave counterpart. Both of this can be
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In the case of s-wave annihilation to massless final

states, the velocity-weighted annihilation cross section is

constant in the limit of small DM velocities, resulting in

h�vi = �vlab. This simplified ansatz for h�vi (neglecting

higher-order contributions in v, following common prac-

tice) has been presented in Fig. 1 in the main text, both

for DM annihilating to SM particles and for situations

in which the relic abundance is set via freeze-out in a

hidden sector.

Here we complement this by considering instead the

case of p-wave annihilation, which also has been fre-

quently considered for DS freeze-out production of

DM [29, 30, 32, 49, 56–58]. To describe such models, we

will again take a simplified ansatz for the cross section

by only keeping the leading term in the DM velocities,

�vlab = b v
2
lab , (7)

where we assume b to be constant. For the ther-

mally averaged cross section entering in the Boltz-

mann equation, Eq. (1), this implies h�vi = b ⇥⇥
6(x/⇠)

�1 � 27(x/⇠)
�2

+ ...
⇤
. The value of b resulting in

the correct DM relic abundance in this case is shown in

Fig. 4, for the same choice of DM models (Dirac and Ma-

jorana fermions, respectively) and heat bath components

as in Fig. 1 in the main text.

In comparison, the main di↵erences in these figures

are that i) the value of b resulting in the correct relic

density is about one order of magnitude larger than the

value of h�vi required in the case of s-wave annihilation

and that ii) this ‘thermal’ value of b rises faster with

m� than its s-wave counterpart. Both of this can be

[In case you ever wondered how the ‘Steigman plot’ looks like for non-constant 
cross sections…]
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Case II: massive annihilation products
In general, nothing prevents    to build up chemical potentials
unless adding new physics, e.g. massless states    with   

S
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Underlying assumptions for standard Boltzmann equation 
not satisfied anymore, even when assuming kinetic EQ:

f eq
� = e�E/T� ⌧ 1
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�
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Need to independently solve for     ,     and     , 
with full spin-statistics!

µ�
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In kinetic EQ, particles will still follow BE / FD distributions

number conservation 

energy conservation

3

freeze-out temperatures, in particular, the heating in the

DS due to ��̄ ! SS, c.f. the nominator of Eq. (3), is

more e�cient than the heating in the SM, leading to

⇠ > 1 around freeze-out. This leads to a larger DM

density, at a given SM temperature T , which has to be

compensated for by a larger h�vi to match the observed

relic abundance. Below DM masses of a few GeV, the

drop in the SM d.o.f. until freeze-out is more significant

than that in the DS (especially during the QCD phase

transition), leading to ⇠ < 1 and hence the need for a

smaller value of h�vi compared to the standard case rep-

resented by the solid lines. We note that the value of ⇠

just before the onset of BBN, on the other hand, does

not depend on m� for the range of DM masses plotted

here. Expressing the final energy density of S in terms of

an e↵ective number of relativistic neutrino species, this

corresponds to �Ne↵ = 0.104(0.202) for Majorana DM

with gS = 1(5), and �Ne↵ = 0.201(0.275) for Dirac DM

– which is below current CMB bounds on this quantity,

�Ne↵ < 0.29 (95% C.L.) [1], but within reach of next-

generation CMB experiments [51, 52].

Chemical potentials during freeze-out.— The above

treatment still assumes that the annihilation products

constitute or are in equilibrium with a heat bath during

the entire chemical decoupling process. This is consis-

tent for massless DS particles S, which retain a vanishing

chemical potential during freeze-out due to unavoidable

number changing interactions such as ��̄ ! ��̄S. For

a fully decoupled DS only containing massive degrees of

freedom, however, such interactions are less e�cient and

may already decouple before freeze-out, implying that all
particles will generally build up chemical potentials (and

not only the DM particles, as in the standard scenario).

In order to demonstrate how to correctly describe the

evolution of the DS in this more general case, we will

consider the same setup as before but mostly focus on

DS particles � and S that are close in mass.

As long as all DS particles remain in kinetic equilib-

rium, in particular, their phase-space densities are given

by Fermi-Dirac or Bose-Einstein distributions with DS

temperature T� and chemical potentials µ� = µ�̄ and

µS , respectively. To determine the temporal evolution

of these three parameters, we consider the Boltzmann

equations for the number densities,

ṅi + 3Hni = C/N�, ṅS + 3HnS = �C , (4)

where the integrated collision operator C is specified in

Appendix B, as well as energy conservation in the DS

during freeze-out, rµT
0µ
DS = 0. The latter takes the form

⇢̇DS + 3H
⇥
⇢DS + PDS

⇤
= 0 , (5)

with total energy density ⇢DS ⌘ N�⇢� + ⇢S and pressure

PDS ⌘ N�P� + PS . Note that Eqs. (4) and (5) generally

do not imply entropy conservation. However, we find

that the respective change in entropy is negligible for
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Q 2 {na, ⇢a, Pa | a 2 {�, �̄, S}} can be interpreted as

functions of T�, µ� and µS . Consequently, the relation

Q̇ =
@Q

@T�
Ṫ� +

@Q

@µ�
µ̇� +

@Q

@µS
µ̇S (6)

can be used to transform Eqs. (4) and (5) into a set of

di↵erential equations for T�, µ� and µS , which we solve

numerically (with µ� = µ�̄ = µS as initial condition).

In Fig. 2 we demonstrate the resulting evolution of the

particle abundances Y ⌘ n/s, with s the total entropy

density in the SM and DS. For definiteness we choose a

Majorana DM particle with m� = 100 GeV and a con-

stant annihilation amplitude that would result in the cor-

rect relic density in the standard treatment (translating

to a value of h�viT�!0 about 10% larger than the orange

lines in Fig. 1). The red curves show the case of mS = 0

for which, following the discussion above, we explicitly

set µS = 0. The resulting evolution of � (red solid line)

therefore coincides exactly with the result of the standard

treatment of solving Eq. (1). We note that the increase

in YS around T� ⇠ m� is due to the Boltzmann suppres-

sion of �, analogous to the increase in n�/s during e
+
e
�

annihilation in the SM.
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more e�cient than the heating in the SM, leading to

⇠ > 1 around freeze-out. This leads to a larger DM
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compensated for by a larger h�vi to match the observed

relic abundance. Below DM masses of a few GeV, the

drop in the SM d.o.f. until freeze-out is more significant

than that in the DS (especially during the QCD phase

transition), leading to ⇠ < 1 and hence the need for a

smaller value of h�vi compared to the standard case rep-

resented by the solid lines. We note that the value of ⇠

just before the onset of BBN, on the other hand, does

not depend on m� for the range of DM masses plotted

here. Expressing the final energy density of S in terms of

an e↵ective number of relativistic neutrino species, this

corresponds to �Ne↵ = 0.104(0.202) for Majorana DM

with gS = 1(5), and �Ne↵ = 0.201(0.275) for Dirac DM

– which is below current CMB bounds on this quantity,

�Ne↵ < 0.29 (95% C.L.) [1], but within reach of next-

generation CMB experiments [51, 52].

Chemical potentials during freeze-out.— The above

treatment still assumes that the annihilation products

constitute or are in equilibrium with a heat bath during

the entire chemical decoupling process. This is consis-

tent for massless DS particles S, which retain a vanishing

chemical potential during freeze-out due to unavoidable

number changing interactions such as ��̄ ! ��̄S. For

a fully decoupled DS only containing massive degrees of

freedom, however, such interactions are less e�cient and

may already decouple before freeze-out, implying that all
particles will generally build up chemical potentials (and

not only the DM particles, as in the standard scenario).

In order to demonstrate how to correctly describe the

evolution of the DS in this more general case, we will

consider the same setup as before but mostly focus on

DS particles � and S that are close in mass.

As long as all DS particles remain in kinetic equilib-

rium, in particular, their phase-space densities are given

by Fermi-Dirac or Bose-Einstein distributions with DS

temperature T� and chemical potentials µ� = µ�̄ and

µS , respectively. To determine the temporal evolution

of these three parameters, we consider the Boltzmann

equations for the number densities,

ṅi + 3Hni = C/N�, ṅS + 3HnS = �C , (4)

where the integrated collision operator C is specified in

Appendix B, as well as energy conservation in the DS

during freeze-out, rµT
0µ
DS = 0. The latter takes the form

⇢̇DS + 3H
⇥
⇢DS + PDS

⇤
= 0 , (5)

with total energy density ⇢DS ⌘ N�⇢� + ⇢S and pressure

PDS ⌘ N�P� + PS . Note that Eqs. (4) and (5) generally

do not imply entropy conservation. However, we find

that the respective change in entropy is negligible for
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and S (dashed lines), as a function of x/⇠ = m�/T�, for dif-
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equation (1) assuming thermal equilibrium of S with an addi-
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all practical calculations we consider. The final step is

to note that, since � and S stay in kinetic equilibrium

for all relevant temperatures, all cosmological quantities

Q 2 {na, ⇢a, Pa | a 2 {�, �̄, S}} can be interpreted as

functions of T�, µ� and µS . Consequently, the relation

Q̇ =
@Q

@T�
Ṫ� +
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@µ�
µ̇� +

@Q

@µS
µ̇S (6)

can be used to transform Eqs. (4) and (5) into a set of

di↵erential equations for T�, µ� and µS , which we solve

numerically (with µ� = µ�̄ = µS as initial condition).

In Fig. 2 we demonstrate the resulting evolution of the

particle abundances Y ⌘ n/s, with s the total entropy

density in the SM and DS. For definiteness we choose a

Majorana DM particle with m� = 100 GeV and a con-

stant annihilation amplitude that would result in the cor-

rect relic density in the standard treatment (translating

to a value of h�viT�!0 about 10% larger than the orange

lines in Fig. 1). The red curves show the case of mS = 0

for which, following the discussion above, we explicitly

set µS = 0. The resulting evolution of � (red solid line)

therefore coincides exactly with the result of the standard

treatment of solving Eq. (1). We note that the increase

in YS around T� ⇠ m� is due to the Boltzmann suppres-

sion of �, analogous to the increase in n�/s during e
+
e
�

annihilation in the SM.

For more degenerate masses (green and purple lines in

3

freeze-out temperatures, in particular, the heating in the

DS due to ��̄ ! SS, c.f. the nominator of Eq. (3), is

more e�cient than the heating in the SM, leading to

⇠ > 1 around freeze-out. This leads to a larger DM

density, at a given SM temperature T , which has to be

compensated for by a larger h�vi to match the observed

relic abundance. Below DM masses of a few GeV, the

drop in the SM d.o.f. until freeze-out is more significant

than that in the DS (especially during the QCD phase

transition), leading to ⇠ < 1 and hence the need for a

smaller value of h�vi compared to the standard case rep-

resented by the solid lines. We note that the value of ⇠

just before the onset of BBN, on the other hand, does

not depend on m� for the range of DM masses plotted

here. Expressing the final energy density of S in terms of

an e↵ective number of relativistic neutrino species, this

corresponds to �Ne↵ = 0.104(0.202) for Majorana DM

with gS = 1(5), and �Ne↵ = 0.201(0.275) for Dirac DM

– which is below current CMB bounds on this quantity,

�Ne↵ < 0.29 (95% C.L.) [1], but within reach of next-

generation CMB experiments [51, 52].

Chemical potentials during freeze-out.— The above

treatment still assumes that the annihilation products

constitute or are in equilibrium with a heat bath during

the entire chemical decoupling process. This is consis-

tent for massless DS particles S, which retain a vanishing

chemical potential during freeze-out due to unavoidable

number changing interactions such as ��̄ ! ��̄S. For

a fully decoupled DS only containing massive degrees of

freedom, however, such interactions are less e�cient and

may already decouple before freeze-out, implying that all
particles will generally build up chemical potentials (and

not only the DM particles, as in the standard scenario).

In order to demonstrate how to correctly describe the

evolution of the DS in this more general case, we will

consider the same setup as before but mostly focus on

DS particles � and S that are close in mass.

As long as all DS particles remain in kinetic equilib-

rium, in particular, their phase-space densities are given

by Fermi-Dirac or Bose-Einstein distributions with DS

temperature T� and chemical potentials µ� = µ�̄ and

µS , respectively. To determine the temporal evolution

of these three parameters, we consider the Boltzmann

equations for the number densities,

ṅi + 3Hni = C/N�, ṅS + 3HnS = �C , (4)

where the integrated collision operator C is specified in

Appendix B, as well as energy conservation in the DS

during freeze-out, rµT
0µ
DS = 0. The latter takes the form

⇢̇DS + 3H
⇥
⇢DS + PDS

⇤
= 0 , (5)

with total energy density ⇢DS ⌘ N�⇢� + ⇢S and pressure

PDS ⌘ N�P� + PS . Note that Eqs. (4) and (5) generally

do not imply entropy conservation. However, we find

that the respective change in entropy is negligible for

FIG. 2. Evolution of particle abundances Ya for � (solid lines)
and S (dashed lines), as a function of x/⇠ = m�/T�, for dif-
ferent mass ratios �m/m� ⌘ (m��mS)/m� = (1, 0.6, 10�2).
For comparison, dotted lines indicate how the DM abundance
Y� would evolve when instead using the standard Boltzmann
equation (1) assuming thermal equilibrium of S with an addi-
tional massless DS heat bath particle. All curves are based on

the same
��M��̄!SS

��2 = const., adjusted to give the correct
relic density in the limit mS ! 0.

all practical calculations we consider. The final step is

to note that, since � and S stay in kinetic equilibrium

for all relevant temperatures, all cosmological quantities

Q 2 {na, ⇢a, Pa | a 2 {�, �̄, S}} can be interpreted as

functions of T�, µ� and µS . Consequently, the relation

Q̇ =
@Q

@T�
Ṫ� +

@Q

@µ�
µ̇� +

@Q

@µS
µ̇S (6)

can be used to transform Eqs. (4) and (5) into a set of

di↵erential equations for T�, µ� and µS , which we solve

numerically (with µ� = µ�̄ = µS as initial condition).

In Fig. 2 we demonstrate the resulting evolution of the

particle abundances Y ⌘ n/s, with s the total entropy

density in the SM and DS. For definiteness we choose a

Majorana DM particle with m� = 100 GeV and a con-

stant annihilation amplitude that would result in the cor-

rect relic density in the standard treatment (translating

to a value of h�viT�!0 about 10% larger than the orange

lines in Fig. 1). The red curves show the case of mS = 0

for which, following the discussion above, we explicitly

set µS = 0. The resulting evolution of � (red solid line)

therefore coincides exactly with the result of the standard

treatment of solving Eq. (1). We note that the increase

in YS around T� ⇠ m� is due to the Boltzmann suppres-

sion of �, analogous to the increase in n�/s during e
+
e
�

annihilation in the SM.

For more degenerate masses (green and purple lines in

transform all time derivatives as
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Case II: results
3

freeze-out temperatures, in particular, the heating in the

DS due to ��̄ ! SS, c.f. the nominator of Eq. (3), is

more e�cient than the heating in the SM, leading to

⇠ > 1 around freeze-out. This leads to a larger DM

density, at a given SM temperature T , which has to be

compensated for by a larger h�vi to match the observed

relic abundance. Below DM masses of a few GeV, the

drop in the SM d.o.f. until freeze-out is more significant

than that in the DS (especially during the QCD phase

transition), leading to ⇠ < 1 and hence the need for a

smaller value of h�vi compared to the standard case rep-

resented by the solid lines. We note that the value of ⇠

just before the onset of BBN, on the other hand, does

not depend on m� for the range of DM masses plotted

here. Expressing the final energy density of S in terms of

an e↵ective number of relativistic neutrino species, this

corresponds to �Ne↵ = 0.104(0.202) for Majorana DM

with gS = 1(5), and �Ne↵ = 0.201(0.275) for Dirac DM

– which is below current CMB bounds on this quantity,

�Ne↵ < 0.29 (95% C.L.) [1], but within reach of next-

generation CMB experiments [51, 52].

Chemical potentials during freeze-out.— The above

treatment still assumes that the annihilation products

constitute or are in equilibrium with a heat bath during

the entire chemical decoupling process. This is consis-

tent for massless DS particles S, which retain a vanishing

chemical potential during freeze-out due to unavoidable

number changing interactions such as ��̄ ! ��̄S. For

a fully decoupled DS only containing massive degrees of

freedom, however, such interactions are less e�cient and

may already decouple before freeze-out, implying that all
particles will generally build up chemical potentials (and

not only the DM particles, as in the standard scenario).

In order to demonstrate how to correctly describe the

evolution of the DS in this more general case, we will

consider the same setup as before but mostly focus on

DS particles � and S that are close in mass.

As long as all DS particles remain in kinetic equilib-

rium, in particular, their phase-space densities are given

by Fermi-Dirac or Bose-Einstein distributions with DS

temperature T� and chemical potentials µ� = µ�̄ and

µS , respectively. To determine the temporal evolution

of these three parameters, we consider the Boltzmann

equations for the number densities,

ṅi + 3Hni = C/N�, ṅS + 3HnS = �C , (4)

where the integrated collision operator C is specified in

Appendix B, as well as energy conservation in the DS

during freeze-out, rµT
0µ
DS = 0. The latter takes the form

⇢̇DS + 3H
⇥
⇢DS + PDS

⇤
= 0 , (5)

with total energy density ⇢DS ⌘ N�⇢� + ⇢S and pressure

PDS ⌘ N�P� + PS . Note that Eqs. (4) and (5) generally

do not imply entropy conservation. However, we find

that the respective change in entropy is negligible for
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FIG. 2. Evolution of particle abundances Ya for � (solid lines)
and S (dashed lines), as a function of x/⇠ = m�/T�, for dif-
ferent mass ratios �m/m� ⌘ (m��mS)/m� = (1, 0.6, 10�2).
For comparison, dotted lines indicate how the DM abundance
Y� would evolve when instead using the standard Boltzmann
equation (1) assuming thermal equilibrium of S with an addi-
tional massless DS heat bath particle. All curves are based on

the same
��M��̄!SS

��2 = const., adjusted to give the correct
relic density in the limit mS ! 0.

all practical calculations we consider. The final step is

to note that, since � and S stay in kinetic equilibrium

for all relevant temperatures, all cosmological quantities

Q 2 {na, ⇢a, Pa | a 2 {�, �̄, S}} can be interpreted as

functions of T�, µ� and µS . Consequently, the relation

Q̇ =
@Q

@T�
Ṫ� +

@Q

@µ�
µ̇� +

@Q

@µS
µ̇S (6)

can be used to transform Eqs. (4) and (5) into a set of

di↵erential equations for T�, µ� and µS , which we solve

numerically (with µ� = µ�̄ = µS as initial condition).

In Fig. 2 we demonstrate the resulting evolution of the

particle abundances Y ⌘ n/s, with s the total entropy

density in the SM and DS. For definiteness we choose a

Majorana DM particle with m� = 100 GeV and a con-

stant annihilation amplitude that would result in the cor-

rect relic density in the standard treatment (translating

to a value of h�viT�!0 about 10% larger than the orange

lines in Fig. 1). The red curves show the case of mS = 0

for which, following the discussion above, we explicitly

set µS = 0. The resulting evolution of � (red solid line)

therefore coincides exactly with the result of the standard

treatment of solving Eq. (1). We note that the increase

in YS around T� ⇠ m� is due to the Boltzmann suppres-

sion of �, analogous to the increase in n�/s during e
+
e
�

annihilation in the SM.

For more degenerate masses (green and purple lines in

4

15

20

25

h�
vi

T
�
!

0
[1

0�
26

cm
3
/s

]

�m/m� = 10
�2Majorana

gS = 1

S ! DR

S ! SM

10
�1

10
0

10
1

10
2

10
3

10
4

10
5

m� [GeV]

1

2

3

4

�m/m� = 1

�m/m� = 0.6

�5

FIG. 3. The required value of the thermally averaged annihi-
lation rate, h�viT�!0, that results in a relic density of Majo-

rana DM particles with a constant
��M��̄!SS

��2 matching the
observed DM abundance. Colors correspond to the same mass
ratios as in Fig. 2, while the line style distinguishes whether S
decays into dark radiation (solid, independent of lifetime ⌧S)
or into SM states (dash-dotted, for ⌧S = 1 s ⇥ (1 GeV/mS)2).

Fig. 2), we allow all chemical potentials to evolve freely.

This leads to a rise in µS , compensating the would-be

Boltzmann suppression of S, and an asymptotic abun-

dance Y
final
S ⇡ Y

initial
S + Y

initial
� because Y

initial
� � Y

final
� .

The greater number of S particles then delays the Boltz-

mann suppression of n� from around T� ⇠ m� to when

the mean kinetic energy of S drops below �m, roughly

around T� ⇠ �m. For reference we also show an applica-

tion of Eq. (1) (dotted lines) assuming thermal equilib-

rium of S with additional massless DS heat bath particles

such that µS = 0 and T� / a
�1

with the scale factor a.

Comparing the purple lines (�m/m� = 10
�2

), e.g., Boltz-

mann suppression of � for the solid line occurs at temper-

atures T� around two orders of magnitude smaller than

for the dotted line, or a one order of magnitude larger

(T� / a
�2

at T� . mS for the solid line). Approximat-

ing the annihilation rate by h�vin2
� / a

�6
, whereas the

dilution by cosmic expansion is 3Hn� / a
�5

, this im-

plies that freeze-out happens when � is less Boltzmann-

suppressed and Y� is enhanced by ⇠ a, i.e. around one

order of magnitude. In general, the correct treatment

of the chemical potentials thus leads to an enhanced DM

abundance compared to the ‘näıve’ assumption of µS = 0

and T� / a
�1

. Comparing instead to the mS = 0 case,

c.f. the standard situation depicted in Fig. 1, Y
final
� first

decreases up to a mass ratio of mS/m� = 0.4 (green

lines), then increases again with S and � becoming more

and more degenerate.

For S close in mass to �, the final DM relic abun-

dance will not only depend on the decoupling process

but also on how S decays after freeze-out. If S was sta-

ble, in particular, it would simply contribute to the to-

tal DM density, by far overshooting the observed value

(unless allowing for su�ciently small temperature ratios

⇠T!1 ⌧ 1, thus relaxing our assumption of initial ther-

mal contact between SM and DS). In Fig. 3 we explore

two concrete decay scenarios, by showing the ‘thermal’

annihilation cross section for the same mass ratios as dis-

cussed in Fig. 2.
1

The first scenario is S decaying to ef-

fectively massless DS states, or dark radiation (DR), and

indicated by solid lines. The additional e↵ective rela-

tivistic d.o.f. resulting from the decay of S will in general

depend on the lifetime ⌧S , because the energy densities

of matter and radiation red-shift di↵erently. As already

for mS = 0 one has �Ne↵ = 0.104 (see above), the case

mS ⇠ m� is generally in conflict with the CMB limit

even if the decay happens shortly after freeze-out. The

second example (dash-dotted lines) considers S decays to

SM states. In this case, the resulting entropy injection

into the SM plasma will lead to a dilution of DM, low-

ering the required DM annihilation cross section. This

e↵ect has recently been argued to allow for DM masses

above the näıve unitarity limit [36, 53, 54]. Note that

the lifetime ⌧S = 1 s ⇥ (1 GeV/mS)
2

chosen here for il-

lustration is expected to be in conflict with observations

of primordial element abundances for ⌧S > 0.1 s [55], i.e.

mS . 3 GeV.

To summarize, the solid lines in Fig. 3 show the re-

quired DM annihilation cross section to obtain the ob-

served DM abundance assuming S decays without in-

jecting entropy in the SM and thus diluting the DM

abundance. These therefore provide an upper limit to

scenarios where S decays into the SM after DM freeze-

out, as exemplary illustrated by the dash-dotted lines. It

is evident that the required DM annihilation cross sec-

tion can be very di↵erent from the canonical value shown

in Fig. 1, in particular for small mass di↵erences. In

the extreme case of degenerate masses, mS = m�, no

Boltzmann suppression of � can occur – independently

of the DM annihilation cross section – implying that the

observed DM abundance can only be achieved for su�-

ciently small temperature ratios ⇠T!1 ⌧ 1 as discussed

above for a stable S.

Discussion.— For the choice of parameters discussed

above we explicitly checked, c.f. Appendix B, that the as-

sumption of kinetic equilibrium is always satisfied during

the freeze-out process, justifying our ansatz for the phase-

space distributions fa. Let us stress that this is particu-

1 This is implemented by adding �nS/⌧S to the r.h.s. of Eq. (4) for
nS , �mSnS/⌧S to the r.h.s. of Eq. (5), and an additional energy
density in dark radiation ⇢̇DR + 4H⇢DR = mSnS/⌧S for decays
in e↵ectively massless DS states, or ⇢̇SM + 3H(⇢SM + PSM) =
mSnS/⌧S for decays into SM particles.

mS = 0

<latexit sha1_base64="YD1JVBoksUE7JhklSFQvNwEBXbs=">AAACAHicdVDLSgMxFM3UV62vqks3wSK4GjJatV0IBTcuK9oHtEPJpJk2NJMZkoxQhm78Abf6B+7ErX/iD/gdZqYjaNEDgcM595XjRZwpjdCHVVhaXlldK66XNja3tnfKu3ttFcaS0BYJeSi7HlaUM0FbmmlOu5GkOPA47XiTq9Tv3FOpWCju9DSiboBHgvmMYG2kVjC4vUSDcgXZZ8ipnyOIbJQhIzXn1IFOrlRAjuag/NkfhiQOqNCEY6V6Doq0m2CpGeF0VurHikaYTPCI9gwVOKDKTbJjZ/DIKEPoh9I8oWGm/uxIcKDUNPBMZYD1WC16qfinF7F04MJ27dfchIko1lSQ+XI/5lCHME0DDpmkRPOpIZhIZu6HZIwlJtpkVjLBfP8e/k/aJ7ZTtes31UqjkUdUBAfgEBwDB1yABrgGTdACBDDwCJ7As/VgvViv1tu8tGDlPfvgF6z3L6oBluM=</latexit>

(case I)
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Conclusions
Increasing interest in dark sector models 
to explain dark matter

Thermal freeze-out works equally well in this case…

… but must be treated correctly for consistent 
interpretation of experimental searches and pheno studies!            

Thanks for your attention!

Even DarkSUSY can’t do everything [yet] ;)

Difference to ‘vanilla’ approach can be orders of magnitude              
[c.f. percent accuracy in total observed DM abundance ]
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DarkSUSY

http://
darksusy.hepforge.org

Numerical package to calculate 
‘all’ DM related quantities:
relic density + kinetic decoupling 

generic SUSY models + laboratory 
constraints implemented
cosmic ray propagation
particle yields for generic DM 
annihilation or decay
indirect detection rates: gammas, 
positrons, antiprotons, neutrinos
direct detection rates
…

;) 

Module ...

..

.

Module generic_wimp
libds_generic_wimp.a

Interface functions
Internal routines

Particle physics modules
src_models/

Module mssm
libds_mssm.a

Interface functions
Internal routines

Linking to main library/user 
replaceable
Linking to chosen module

Possible (but not used) calling
Calling sequence

Main DS 
library
src/
libds_main.a

Observables 
(rates, relic 
density etc)

Main program
User-supplied, e.g. 
examples/dsmain.F

User
replaceables

User
replaceables
Functions 
replaced
and modified
by user

User
replaceables
Functions 
replaced
and modified
by user

User
replaceables
Functions 
replaced
and modified
by user

User
replaceables
Functions 
replaced
and modified
by user

TB, Edsjö, Gondolo, 
Ullio & Bergström,  

JCAP ‘18

since 6.1: DM self-interactions

(also for                              )Tdark 6= Tphoton
<latexit sha1_base64="xNJgwyCX22SvUc2xW01ZOb8m9bY=">AAACJHicdVDLSgMxFM34rPVVdekmWERXJeOz7gpuXFboC9phyKRpG5pJxiQjlGE+wd/wB9zqH7gTF25c+h1m2opa9EDgcM69ufeeIOJMG4TenLn5hcWl5dxKfnVtfWOzsLXd0DJWhNaJ5FK1AqwpZ4LWDTOctiJFcRhw2gyGl5nfvKVKMylqZhRRL8R9wXqMYGMlv3CQ1PxOiM1AhUkXq2HaEfQGfmvRQBop0tQvFFHpFLkXZwiiEhpjTMrusQvdqVIEU1T9wkenK0kcUmEIx1q3XRQZL8HKMMJpmu/EmkaYDHGfti0VOKTaS8YHpXDfKl3Yk8o+YeBY/dmR4FDrURjYymxPPetl4p9exLIPZ6abXtlLmIhiQwWZDO/FHBoJs8RglylKDB9Zgolidn9IBlhhYmyueRvM1/Xwf9I4Krmo5F6fFCvlaUQ5sAv2wCFwwTmogCtQBXVAwB14AI/gybl3np0X53VSOudMe3bALzjvn16Jpto=</latexit><latexit sha1_base64="xNJgwyCX22SvUc2xW01ZOb8m9bY=">AAACJHicdVDLSgMxFM34rPVVdekmWERXJeOz7gpuXFboC9phyKRpG5pJxiQjlGE+wd/wB9zqH7gTF25c+h1m2opa9EDgcM69ufeeIOJMG4TenLn5hcWl5dxKfnVtfWOzsLXd0DJWhNaJ5FK1AqwpZ4LWDTOctiJFcRhw2gyGl5nfvKVKMylqZhRRL8R9wXqMYGMlv3CQ1PxOiM1AhUkXq2HaEfQGfmvRQBop0tQvFFHpFLkXZwiiEhpjTMrusQvdqVIEU1T9wkenK0kcUmEIx1q3XRQZL8HKMMJpmu/EmkaYDHGfti0VOKTaS8YHpXDfKl3Yk8o+YeBY/dmR4FDrURjYymxPPetl4p9exLIPZ6abXtlLmIhiQwWZDO/FHBoJs8RglylKDB9Zgolidn9IBlhhYmyueRvM1/Xwf9I4Krmo5F6fFCvlaUQ5sAv2wCFwwTmogCtQBXVAwB14AI/gybl3np0X53VSOudMe3bALzjvn16Jpto=</latexit><latexit sha1_base64="xNJgwyCX22SvUc2xW01ZOb8m9bY=">AAACJHicdVDLSgMxFM34rPVVdekmWERXJeOz7gpuXFboC9phyKRpG5pJxiQjlGE+wd/wB9zqH7gTF25c+h1m2opa9EDgcM69ufeeIOJMG4TenLn5hcWl5dxKfnVtfWOzsLXd0DJWhNaJ5FK1AqwpZ4LWDTOctiJFcRhw2gyGl5nfvKVKMylqZhRRL8R9wXqMYGMlv3CQ1PxOiM1AhUkXq2HaEfQGfmvRQBop0tQvFFHpFLkXZwiiEhpjTMrusQvdqVIEU1T9wkenK0kcUmEIx1q3XRQZL8HKMMJpmu/EmkaYDHGfti0VOKTaS8YHpXDfKl3Yk8o+YeBY/dmR4FDrURjYymxPPetl4p9exLIPZ6abXtlLmIhiQwWZDO/FHBoJs8RglylKDB9Zgolidn9IBlhhYmyueRvM1/Xwf9I4Krmo5F6fFCvlaUQ5sAv2wCFwwTmogCtQBXVAwB14AI/gybl3np0X53VSOudMe3bALzjvn16Jpto=</latexit><latexit sha1_base64="xNJgwyCX22SvUc2xW01ZOb8m9bY=">AAACJHicdVDLSgMxFM34rPVVdekmWERXJeOz7gpuXFboC9phyKRpG5pJxiQjlGE+wd/wB9zqH7gTF25c+h1m2opa9EDgcM69ufeeIOJMG4TenLn5hcWl5dxKfnVtfWOzsLXd0DJWhNaJ5FK1AqwpZ4LWDTOctiJFcRhw2gyGl5nfvKVKMylqZhRRL8R9wXqMYGMlv3CQ1PxOiM1AhUkXq2HaEfQGfmvRQBop0tQvFFHpFLkXZwiiEhpjTMrusQvdqVIEU1T9wkenK0kcUmEIx1q3XRQZL8HKMMJpmu/EmkaYDHGfti0VOKTaS8YHpXDfKl3Yk8o+YeBY/dmR4FDrURjYymxPPetl4p9exLIPZ6abXtlLmIhiQwWZDO/FHBoJs8RglylKDB9Zgolidn9IBlhhYmyueRvM1/Xwf9I4Krmo5F6fFCvlaUQ5sAv2wCFwwTmogCtQBXVAwB14AI/gybl3np0X53VSOudMe3bALzjvn16Jpto=</latexit>

Since version 6: 
no longer restricted to 
supersymmetric DM !

since 6.2: ‘reverse’ direct detection 
(see later)

http://darksusy.hepforge.org
http://darksusy.hepforge.org
http://darksusy.hepforge.org
http://darksusy.hepforge.org

