N-PACT meeting, Kristiansand, 4-6 Aug 2020

Thermal decoupling of Dark Matter in hidden sectors

Based on: TB, Depta, Hufnagel & Schmidt-Hoberg, 2007.03696

The standard treatmentTM (

 ${\ensuremath{\, \ensuremath{\, \ensuremath{\,$

WIMP DM is seriously pressured, but not (yet) 'dead' !

Arcadi+, EPJC '18 Athron+, EPJC '19 (+ many more)

UiO: University of Oslo (Torsten Bringmann)

Ingredients for numerical evaluation

Thermal average:

$$\langle \sigma v \rangle \equiv \frac{g_{\chi}^2}{n_{\chi,\mathrm{eq}}^2} \int \frac{d^3 p}{(2\pi)^3} \frac{d^3 \tilde{p}}{(2\pi)^3} \sigma v_{\bar{\chi}\chi \to \bar{f}f} f_{\chi,\mathrm{eq}}(\mathbf{p}) f_{\chi,\mathrm{eq}}(\tilde{\mathbf{p}})$$

$$2m \sqrt{\tilde{s}-1} (2\tilde{s}-1) K_1 \left(\frac{2\sqrt{\tilde{s}}m_{\chi}}{2\sqrt{\tilde{s}}m_{\chi}}\right)$$

$$= \int_{1}^{\infty} d\tilde{s} \, \sigma_{\bar{\chi}\chi \to \bar{f}f} v_{\text{lab}} \frac{2m_{\chi}\sqrt{\tilde{s}} - 1(2\tilde{s} - 1)K_1\left(\frac{2\sqrt{s}m_{\chi}}{T}\right)}{TK_2^2(m_{\chi}/T)}$$

Number density in EQ:

 $n_{\chi,\text{eq}} = g_{\chi} m_{\chi}^2 T K_2 (m_{\chi}/T) / (2\pi^2)$

Radiation domination:

$$H^2 = \frac{8\pi G}{3} \rho \equiv \frac{8\pi^3 G}{90} g_{\text{eff}} T^4$$

[See also Steigman+, PRD '12]

(Often forgotten) assumptions

Soltzmann equation at phase-space level:

 $\left[\int d^3p \text{ gives Eq for number density } n_{\chi}\right]$

DM becomes non-relativistic while still in (full) EQ:

$$f_{\chi}^{\rm eq} = e^{-E/T} \ll 1$$

DM remains in kinetic EQ during freeze-out

$$f_{\chi} = e^{-(E-\mu_{\chi})/T} = e^{\mu_{\chi}/T} f_{\chi}^{\text{eq}}$$

$$\mu_{\chi}/m_{\chi} \ll 1$$

(energy conservation: $E_{\rm SM} = E_{\chi}$)

SM particles never build up significant chemical potentials

 $f_{\rm SM} = e^{-E_{\rm SM}/T}$

UiO: University of Oslo (Torsten Bringmann)

Hidden sector freeze-out – 4

Generic dark sector models

$SU(3)_c \times SU(2)_L \times U(1)_Y$

Standard

Model

e.g. $\mathcal{L}_{\mathrm{Higgs}} \supset \kappa |\phi|^2 |\Theta|^2$

SM particles

$$\xi(T) \equiv \frac{T_{\chi}(T)}{T} = \frac{\left[g_*^{\rm SM}(T)/g_*^{\rm SM}(T_{\rm dec})\right]^{\frac{1}{3}}}{\left[g_*^{\rm DS}(T)/g_*^{\rm DS}(T_{\rm dec})\right]^{\frac{1}{3}}}$$

Let's study a simple set-up for concreteness:

 ${}^{\odot}$ only fermionic DM (χ) and a scalar (S) in dark sector (with $m_S < m_\chi$)

 \odot decoupling at high temperatures: $T_{
m dec} \gg m_t, m_\chi$

 $(directly) afterwards EQ in DS through \overline{\chi}\chi \leftrightarrow SS$ UiO: University of Oslo (Torsten Bringmann)

Case I: massless DS 'heat bath'

$\ensuremath{\,^{\odot}}$ Vanishing chemical potential for S

 ${}^{\mbox{\tiny \ensuremath{ \hbox{\tiny \oplus}}}}$ e.g. because of $\ {} \bar{\chi}\chi
ightarrow {} \bar{\chi}\chi S$

UiO: University of Oslo (Torsten Bringmann)

 \Rightarrow identical assumptions to standard case possible, after replacing $T \rightarrow T_{\chi}$

 \Rightarrow Can use same Boltzmann equation for n_{χ} , after changing

p-wave annihilation

[In case you ever wondered how the 'Steigman plot' looks like for non-constant cross sections...]

Case II: massive annihilation products

- $\ensuremath{\,^{\odot}}$ In general, nothing prevents S to build up chemical potentials
 - @ unless adding new physics, e.g. massless states N with $\Gamma_{\bar{N}N\leftrightarrow SS}\gg\Gamma_{\bar{\chi}\chi\leftrightarrow SS}$
- Underlying assumptions for standard Boltzmann equation **not** satisfied anymore, even when assuming kinetic EQ:

$$f_{\chi}^{\rm eq} \neq e^{-E/T_{\chi}} \ll 1$$

- In kinetic EQ, particles will still follow BE / FD distributions
 Need to independently solve for T_{χ} , μ_{χ} and μ_{S} , with full spin-statistics!
 - \square number conservation $\dot{n}_i + 3Hn_i = \mathfrak{C}/N_{\chi}, \quad \dot{n}_S + 3Hn_S = -\mathfrak{C}$
 - \odot energy conservation $\nabla_{\mu}T_{\rm DS}^{0\mu}=0$

Case II: results

Conclusions

- Increasing interest in dark sector models
 to explain dark matter
- Thermal freeze-out works equally well in this case...
 ... but must be treated correctly for consistent
 interpretation of experimental searches and pheno studies!
- Difference to 'vanilla' approach can be orders of magnitude [c.f. percent accuracy in total observed DM abundance]
- Even DarkSUSY can't do everything [yet] ;)

Thanks for your attention!

DarkSUSY

TB, Edsjö, Gondolo, Ullio & Bergström, JCAP '18

<u>http://</u> <u>darksusy.hepforge.org</u>

Since version 6: no longer restricted to supersymmetric DM !

- Numerical package to calculate
 'all' DM related quantities:
 - $\ \ \, \odot \ \ \, relic \ \ \, density$ + kinetic decoupling (also for $T_{\rm dark} \neq T_{\rm photon}$)
 - generic SUSY models + laboratory constraints implemented
 - cosmic ray propagation
 - particle yields for generic DM annihilation or decay
 - indirect detection rates: gammas, positrons, antiprotons, neutrinos
 - direct detection rates

since 6.1: DM self-interactions since 6.2: 'reverse' direct detection (see later)

💋 UiO **: University of Oslo** (Torsten Bringmann)