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1d Lindblad equation in coord. space

one-dimensional case. It already presents us with many of the relevant tech-
nical challenges, while requiring significantly less computational resources
for its implementation. It furthermore simplifies the presentation, without
compromising with the fundamental computational development.

In one dimension, derivatives in the x and y coordinate do not carry
indices anymore and Eq. (16) reduces to
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Here the physics of the dissipation kernel D(x) enters via three real-valued
scalar functions, which, keeping in mind that A(x) = D(x)/8T
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Conservation of defining properties in one-dimension
In order for positivity and hermiticity of the density matrix to be con-

served in the Lindblad formalism, the function D(x) in momentum space
needs to be positive and real. As the dissipation kernel is supplied as ex-
ternal input, this property can be explicitly checked for and we will make
sure it is fulfilled in the simulations that follow. Here we focus on the preser-
vation of the trace in Eq. (20), which presents the central challenge in its
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Preservation of the continuum properties?

shown that the most general equation of motion for ⇢̂S can be written in
terms of the (Gorini–Kossakowski–Sudarshan)-Lindblad equation [5, 6]
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This equation describes the in-general non-unitary, i.e. dissipative, time evo-
lution of the subsystem S through its reduced density matrix ⇢̂S. I.e. all
operators here act only on states | Si 2 HS in the subsystem subspace of
the full Hilbert space. The influence of the environment E manifests itself in
the presence of Lindblad operators L̂k, damping rates �k and possible modi-
fications of the subsystem Hamiltonian H̃S 6= ĤS (explicit examples of these
quantities will be derived in Section 2). Formulating the dissipative dynam-
ics in terms of a Lindblad equation is advantageous, as it can be proven that
this equation preserves the main physical properties of the reduced density
matrix, i.e. positivity, hermiticity and unitarity
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The preservation of unit trace in particular is important, as the probabil-
ity interpretation of the density matrix rests upon it. The reason is that
understanding the energy, momentum and particle exchange between the
subsystem and environment is of central interest in our study. Thus it is
paramount to ensure that the formulation of the problem does not introduce
artificial loss channels. These may e.g. deplete the probabilities p̃l in Eq. (4)
beyond the true effect induced by the presence of the environment.

In general Eq. (5) can be expressed in the coordinate space basis of the
Hilbert space, where the matrix elements of the reduced density matrix
⇢(x1,x2, . . . ,y2,y1, t) = hx1,x2, . . . |⇢̂S(t)| . . . ,y2,y1i 2 C form a complex
function with a dependence on twice the number of coordinates xi,yi 2 R3

as are particles present in the system. The ensuing partial differential equa-
tion remains linear in the density matrix, but contains both spatially varying
and complex valued coefficients and derivative terms for each coordinate
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The computational challenge, which we address in this paper, lies in dis-
cretizing Eq. (7) and implementing it with a stable and accurate numerical
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Conservation of defining properties in one-dimension
In order for positivity and hermiticity of the density matrix to be con-

served in the Lindblad formalism, the function D(x) in momentum space
needs to be positive and real. As the dissipation kernel is supplied as ex-
ternal input, this property can be explicitly checked for and we will make
sure it is fulfilled in the simulations that follow. Here we focus on the preser-
vation of the trace in Eq. (20), which presents the central challenge in its
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Preservation of the continuum properties?
procedure, which in addition guarantees that the properties in Eq. (6) are
preserved. Using an arbitrary complex test function f(x1,x2, . . .) 2 C and
denoting by �

(3)
(x1 � y1) the three-dimensional delta function, these prop-

erties can be formulated in terms of the matrix elements as follows.
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The numerical treatment of initial-boundary value problems (IBVPs),
among them the Navier-Stokes and Schrödinger-like equations, such as Eq. (7),
has seen significant progress over the past decade with the development
and refinement of summation-by-parts (SBP) difference operators (for re-
views see e.g. [7, 8, 9]). As these operators build upon the finite difference
approach (although they can be formulated for many other schemes, see
[10, 11, 12, 13, 14, 15, 16, 17, 18]) they are straight forward to implement
and their numerical evaluation cost is low. The fact that they mimic the
integration by parts property of the continuum theory facilitates proofs of
stability, e.g. when deploying SBP operators in time stepping approaches
for computational fluid dynamics [19]. After the development of SBP opera-
tors for first derivatives, higher derivative approximations [20, 21] have been
derived. More recently the SBP technique has also been applied to deriva-
tives in time direction [9, 22, 23]. While in this study only periodic bound-
ary conditions will be deployed, the SBP operators can easily accommodate
non-trivial boundary conditions (in the weak sense) via the Simultaneous
Approximation Term (SAT) technique [24].

To make the paper self-contained, we provide a brief introduction to SBP
operators and recommend [7, 8] for extensive reviews. Let the domain [xL, xR]

be discretized with N+1 equidistant grid points xi = xL+i�x, i = 0, . . . , N ,
where �x = (xR � xL)/N . Denote by u(t) = [u0, . . . , uN ]

> the vector con-
taining the function u(t, x) evaluated at spatial grid points at time t. The

5

procedure, which in addition guarantees that the properties in Eq. (6) are
preserved. Using an arbitrary complex test function f(x1,x2, . . .) 2 C and
denoting by �

(3)
(x1 � y1) the three-dimensional delta function, these prop-

erties can be formulated in terms of the matrix elements as follows.

Positivity : 8f(x1,x2, . . .) 2 C, (8)
Z

d
3
x1d

3
x2 . . . d

3
y2d

3
y1f(x1,x2, . . .)

⇤
⇢(x1,x2, . . . ,y2,y1, t)f(y1,y2, . . .) � 0

Hermiticity : ⇢(y1,y2, . . . ,x2,x1, t)
⇤
= ⇢(x1,x2, . . . ,y2,y1, t) (9)

Unit trace : (10)
Z

d
3
x1d

3
x2 . . . d

3
y2d

3
y1�

(3)
(x1 � y1) . . . ⇢(x1,x2, . . . ,y2,y1, t) = 1

The numerical treatment of initial-boundary value problems (IBVPs),
among them the Navier-Stokes and Schrödinger-like equations, such as Eq. (7),
has seen significant progress over the past decade with the development
and refinement of summation-by-parts (SBP) difference operators (for re-
views see e.g. [7, 8, 9]). As these operators build upon the finite difference
approach (although they can be formulated for many other schemes, see
[10, 11, 12, 13, 14, 15, 16, 17, 18]) they are straight forward to implement
and their numerical evaluation cost is low. The fact that they mimic the
integration by parts property of the continuum theory facilitates proofs of
stability, e.g. when deploying SBP operators in time stepping approaches
for computational fluid dynamics [19]. After the development of SBP opera-
tors for first derivatives, higher derivative approximations [20, 21] have been
derived. More recently the SBP technique has also been applied to deriva-
tives in time direction [9, 22, 23]. While in this study only periodic bound-
ary conditions will be deployed, the SBP operators can easily accommodate
non-trivial boundary conditions (in the weak sense) via the Simultaneous
Approximation Term (SAT) technique [24].

To make the paper self-contained, we provide a brief introduction to SBP
operators and recommend [7, 8] for extensive reviews. Let the domain [xL, xR]

be discretized with N+1 equidistant grid points xi = xL+i�x, i = 0, . . . , N ,
where �x = (xR � xL)/N . Denote by u(t) = [u0, . . . , uN ]

> the vector con-
taining the function u(t, x) evaluated at spatial grid points at time t. The

5

re
qu

ire
d 

fo
r t

he
 

pr
ob

ab
ilit

y 
in

te
rp

re
ta

tio
n

shown that the most general equation of motion for ⇢̂S can be written in
terms of the (Gorini–Kossakowski–Sudarshan)-Lindblad equation [5, 6]

d

dt
⇢̂S = �i[H̃S, ⇢̂S] +

X

k

�k

⇣
L̂k⇢̂SL̂

†
k
�

1

2
L̂
†
k
L̂k⇢S �

1

2
⇢̂SL̂

†
k
L̂k

⌘
. (5)

This equation describes the in-general non-unitary, i.e. dissipative, time evo-
lution of the subsystem S through its reduced density matrix ⇢̂S. I.e. all
operators here act only on states | Si 2 HS in the subsystem subspace of
the full Hilbert space. The influence of the environment E manifests itself in
the presence of Lindblad operators L̂k, damping rates �k and possible modi-
fications of the subsystem Hamiltonian H̃S 6= ĤS (explicit examples of these
quantities will be derived in Section 2). Formulating the dissipative dynam-
ics in terms of a Lindblad equation is advantageous, as it can be proven that
this equation preserves the main physical properties of the reduced density
matrix, i.e. positivity, hermiticity and unitarity

h 
S
n
|⇢S| 

S
n
i > 0, 8n, ⇢

†
S = ⇢S, Tr[⇢S] = 1. (6)

The preservation of unit trace in particular is important, as the probabil-
ity interpretation of the density matrix rests upon it. The reason is that
understanding the energy, momentum and particle exchange between the
subsystem and environment is of central interest in our study. Thus it is
paramount to ensure that the formulation of the problem does not introduce
artificial loss channels. These may e.g. deplete the probabilities p̃l in Eq. (4)
beyond the true effect induced by the presence of the environment.

In general Eq. (5) can be expressed in the coordinate space basis of the
Hilbert space, where the matrix elements of the reduced density matrix
⇢(x1,x2, . . . ,y2,y1, t) = hx1,x2, . . . |⇢̂S(t)| . . . ,y2,y1i 2 C form a complex
function with a dependence on twice the number of coordinates xi,yi 2 R3

as are particles present in the system. The ensuing partial differential equa-
tion remains linear in the density matrix, but contains both spatially varying
and complex valued coefficients and derivative terms for each coordinate

i
d

dt
hx1,x2, . . . |⇢̂S(t)| . . . ,y2,y1i = i

@

@t
⇢(x1,x2, . . . ,y2,y1, t) (7)

= F

h
x1,x2, . . . ,y2,y1,rx1,rx2, . . . ,ry2,ry1, t

i
⇢(x1,x2, . . . ,y2,y1, t).

The computational challenge, which we address in this paper, lies in dis-
cretizing Eq. (7) and implementing it with a stable and accurate numerical
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one-dimensional case. It already presents us with many of the relevant tech-
nical challenges, while requiring significantly less computational resources
for its implementation. It furthermore simplifies the presentation, without
compromising with the fundamental computational development.

In one dimension, derivatives in the x and y coordinate do not carry
indices anymore and Eq. (16) reduces to
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Here the physics of the dissipation kernel D(x) enters via three real-valued
scalar functions, which, keeping in mind that A(x) = D(x)/8T
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Conservation of defining properties in one-dimension
In order for positivity and hermiticity of the density matrix to be con-

served in the Lindblad formalism, the function D(x) in momentum space
needs to be positive and real. As the dissipation kernel is supplied as ex-
ternal input, this property can be explicitly checked for and we will make
sure it is fulfilled in the simulations that follow. Here we focus on the preser-
vation of the trace in Eq. (20), which presents the central challenge in its
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Preservation of the continuum properties?
procedure, which in addition guarantees that the properties in Eq. (6) are
preserved. Using an arbitrary complex test function f(x1,x2, . . .) 2 C and
denoting by �

(3)
(x1 � y1) the three-dimensional delta function, these prop-

erties can be formulated in terms of the matrix elements as follows.
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The numerical treatment of initial-boundary value problems (IBVPs),
among them the Navier-Stokes and Schrödinger-like equations, such as Eq. (7),
has seen significant progress over the past decade with the development
and refinement of summation-by-parts (SBP) difference operators (for re-
views see e.g. [7, 8, 9]). As these operators build upon the finite difference
approach (although they can be formulated for many other schemes, see
[10, 11, 12, 13, 14, 15, 16, 17, 18]) they are straight forward to implement
and their numerical evaluation cost is low. The fact that they mimic the
integration by parts property of the continuum theory facilitates proofs of
stability, e.g. when deploying SBP operators in time stepping approaches
for computational fluid dynamics [19]. After the development of SBP opera-
tors for first derivatives, higher derivative approximations [20, 21] have been
derived. More recently the SBP technique has also been applied to deriva-
tives in time direction [9, 22, 23]. While in this study only periodic bound-
ary conditions will be deployed, the SBP operators can easily accommodate
non-trivial boundary conditions (in the weak sense) via the Simultaneous
Approximation Term (SAT) technique [24].

To make the paper self-contained, we provide a brief introduction to SBP
operators and recommend [7, 8] for extensive reviews. Let the domain [xL, xR]

be discretized with N+1 equidistant grid points xi = xL+i�x, i = 0, . . . , N ,
where �x = (xR � xL)/N . Denote by u(t) = [u0, . . . , uN ]

> the vector con-
taining the function u(t, x) evaluated at spatial grid points at time t. The
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non-trivial boundary conditions (in the weak sense) via the Simultaneous
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Starting point: Crank-Nicholson scheme 
(which for non-dissipative dynamics preserves exactly)

⇢(x; y ; t +�t) = exp[�i�tL]⇢(x; y ; t) ⇡
1� 1

2 i�tL
1 + 1

2 i�tL
Pade(1;1)

⇢(x; y ; t)
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shown that the most general equation of motion for ⇢̂S can be written in
terms of the (Gorini–Kossakowski–Sudarshan)-Lindblad equation [5, 6]
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This equation describes the in-general non-unitary, i.e. dissipative, time evo-
lution of the subsystem S through its reduced density matrix ⇢̂S. I.e. all
operators here act only on states | Si 2 HS in the subsystem subspace of
the full Hilbert space. The influence of the environment E manifests itself in
the presence of Lindblad operators L̂k, damping rates �k and possible modi-
fications of the subsystem Hamiltonian H̃S 6= ĤS (explicit examples of these
quantities will be derived in Section 2). Formulating the dissipative dynam-
ics in terms of a Lindblad equation is advantageous, as it can be proven that
this equation preserves the main physical properties of the reduced density
matrix, i.e. positivity, hermiticity and unitarity

h 
S
n
|⇢S| 

S
n
i > 0, 8n, ⇢

†
S = ⇢S, Tr[⇢S] = 1. (6)

The preservation of unit trace in particular is important, as the probabil-
ity interpretation of the density matrix rests upon it. The reason is that
understanding the energy, momentum and particle exchange between the
subsystem and environment is of central interest in our study. Thus it is
paramount to ensure that the formulation of the problem does not introduce
artificial loss channels. These may e.g. deplete the probabilities p̃l in Eq. (4)
beyond the true effect induced by the presence of the environment.

In general Eq. (5) can be expressed in the coordinate space basis of the
Hilbert space, where the matrix elements of the reduced density matrix
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function with a dependence on twice the number of coordinates xi,yi 2 R3

as are particles present in the system. The ensuing partial differential equa-
tion remains linear in the density matrix, but contains both spatially varying
and complex valued coefficients and derivative terms for each coordinate
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The computational challenge, which we address in this paper, lies in dis-
cretizing Eq. (7) and implementing it with a stable and accurate numerical
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one-dimensional case. It already presents us with many of the relevant tech-
nical challenges, while requiring significantly less computational resources
for its implementation. It furthermore simplifies the presentation, without
compromising with the fundamental computational development.

In one dimension, derivatives in the x and y coordinate do not carry
indices anymore and Eq. (16) reduces to
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Here the physics of the dissipation kernel D(x) enters via three real-valued
scalar functions, which, keeping in mind that A(x) = D(x)/8T
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Conservation of defining properties in one-dimension
In order for positivity and hermiticity of the density matrix to be con-

served in the Lindblad formalism, the function D(x) in momentum space
needs to be positive and real. As the dissipation kernel is supplied as ex-
ternal input, this property can be explicitly checked for and we will make
sure it is fulfilled in the simulations that follow. Here we focus on the preser-
vation of the trace in Eq. (20), which presents the central challenge in its

11

one-dimensional case. It already presents us with many of the relevant tech-
nical challenges, while requiring significantly less computational resources
for its implementation. It furthermore simplifies the presentation, without
compromising with the fundamental computational development.

In one dimension, derivatives in the x and y coordinate do not carry
indices anymore and Eq. (16) reduces to

@t⇢
rel
(x, y, t) = i

h
1

M

@
2

@x2
� V (x)

i
⇢
rel
(x, y, t)� i

h
1

M

@
2

@y2
� V (y)

i
⇢
rel
(x, y, t)

(20)

+

h
2F1

⇣
x� y

2

⌘
� 2F1

�
0
�
+ F1

�
x
�
+ F1

�
y
�
� 2F1

⇣
x+ y

2

⌘i
⇢
rel
(x, y, t)

�

h
@
2

@x2

@
2

@x2A(x)

4M2
+

@
2

@y2

@
2

@y2
A(y)

4M2

i
⇢
rel
(x, y, t)

+

h
2F2

⇣
x� y

2

⌘
+ 2F2

�
x
�
� 2F2

⇣
x+ y

2

⌘
�

@

@x

@
2

@x2A(x)

M2

i
@

@x
⇢
rel
(x, y, t)

+

h
� 2F2

⇣
x� y

2

⌘
+ 2F2

�
x
�
� 2F2

⇣
x+ y

2

⌘
�

@

@y

@
2

@y2
A(y)

M2

i
@

@y
⇢
rel
(x, y, t)

+

h
2F3

⇣
x� y

2

⌘
+ 2F3

⇣
x+ y

2

⌘i
@

@x

@

@y
⇢
rel
(x, y, t)

+

h
F3(0

�
+ F3(x

�i @
2

@x2
⇢
rel
(x, y, t) +

h
F3(0

�
+ F3(y

�i @
2

@y2
⇢
rel
(x, y, t).

Here the physics of the dissipation kernel D(x) enters via three real-valued
scalar functions, which, keeping in mind that A(x) = D(x)/8T

2, read

F1

�
x
�
=

h
D(x) +

1

4MT

@
2

@x2
D(x) +

1

8M2

@
4

@x4
A(x)

i
, (21)

F2

�
x
�
=

1

4MT

@

@x
D(x) +

1

4M2

@
3

@x3
A(x), F3

�
x
�
= �

1

2M2

@
2

@x2
A(x).

Conservation of defining properties in one-dimension
In order for positivity and hermiticity of the density matrix to be con-

served in the Lindblad formalism, the function D(x) in momentum space
needs to be positive and real. As the dissipation kernel is supplied as ex-
ternal input, this property can be explicitly checked for and we will make
sure it is fulfilled in the simulations that follow. Here we focus on the preser-
vation of the trace in Eq. (20), which presents the central challenge in its

11

Preservation of the continuum properties?

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-0.2 0 0.2 0.4 0.6 0.8 1

Im
[�
]

Re[�]

exact hermiticity and positivity
Initial t=0
tM=100
tM=300
tM=600
tM=900
tM=1200
tM=6000

procedure, which in addition guarantees that the properties in Eq. (6) are
preserved. Using an arbitrary complex test function f(x1,x2, . . .) 2 C and
denoting by �

(3)
(x1 � y1) the three-dimensional delta function, these prop-

erties can be formulated in terms of the matrix elements as follows.

Positivity : 8f(x1,x2, . . .) 2 C, (8)
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The numerical treatment of initial-boundary value problems (IBVPs),
among them the Navier-Stokes and Schrödinger-like equations, such as Eq. (7),
has seen significant progress over the past decade with the development
and refinement of summation-by-parts (SBP) difference operators (for re-
views see e.g. [7, 8, 9]). As these operators build upon the finite difference
approach (although they can be formulated for many other schemes, see
[10, 11, 12, 13, 14, 15, 16, 17, 18]) they are straight forward to implement
and their numerical evaluation cost is low. The fact that they mimic the
integration by parts property of the continuum theory facilitates proofs of
stability, e.g. when deploying SBP operators in time stepping approaches
for computational fluid dynamics [19]. After the development of SBP opera-
tors for first derivatives, higher derivative approximations [20, 21] have been
derived. More recently the SBP technique has also been applied to deriva-
tives in time direction [9, 22, 23]. While in this study only periodic bound-
ary conditions will be deployed, the SBP operators can easily accommodate
non-trivial boundary conditions (in the weak sense) via the Simultaneous
Approximation Term (SAT) technique [24].

To make the paper self-contained, we provide a brief introduction to SBP
operators and recommend [7, 8] for extensive reviews. Let the domain [xL, xR]

be discretized with N+1 equidistant grid points xi = xL+i�x, i = 0, . . . , N ,
where �x = (xR � xL)/N . Denote by u(t) = [u0, . . . , uN ]

> the vector con-
taining the function u(t, x) evaluated at spatial grid points at time t. The
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shown that the most general equation of motion for ⇢̂S can be written in
terms of the (Gorini–Kossakowski–Sudarshan)-Lindblad equation [5, 6]

d

dt
⇢̂S = �i[H̃S, ⇢̂S] +
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This equation describes the in-general non-unitary, i.e. dissipative, time evo-
lution of the subsystem S through its reduced density matrix ⇢̂S. I.e. all
operators here act only on states | Si 2 HS in the subsystem subspace of
the full Hilbert space. The influence of the environment E manifests itself in
the presence of Lindblad operators L̂k, damping rates �k and possible modi-
fications of the subsystem Hamiltonian H̃S 6= ĤS (explicit examples of these
quantities will be derived in Section 2). Formulating the dissipative dynam-
ics in terms of a Lindblad equation is advantageous, as it can be proven that
this equation preserves the main physical properties of the reduced density
matrix, i.e. positivity, hermiticity and unitarity

h 
S
n
|⇢S| 

S
n
i > 0, 8n, ⇢

†
S = ⇢S, Tr[⇢S] = 1. (6)

The preservation of unit trace in particular is important, as the probabil-
ity interpretation of the density matrix rests upon it. The reason is that
understanding the energy, momentum and particle exchange between the
subsystem and environment is of central interest in our study. Thus it is
paramount to ensure that the formulation of the problem does not introduce
artificial loss channels. These may e.g. deplete the probabilities p̃l in Eq. (4)
beyond the true effect induced by the presence of the environment.

In general Eq. (5) can be expressed in the coordinate space basis of the
Hilbert space, where the matrix elements of the reduced density matrix
⇢(x1,x2, . . . ,y2,y1, t) = hx1,x2, . . . |⇢̂S(t)| . . . ,y2,y1i 2 C form a complex
function with a dependence on twice the number of coordinates xi,yi 2 R3

as are particles present in the system. The ensuing partial differential equa-
tion remains linear in the density matrix, but contains both spatially varying
and complex valued coefficients and derivative terms for each coordinate
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The computational challenge, which we address in this paper, lies in dis-
cretizing Eq. (7) and implementing it with a stable and accurate numerical
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one-dimensional case. It already presents us with many of the relevant tech-
nical challenges, while requiring significantly less computational resources
for its implementation. It furthermore simplifies the presentation, without
compromising with the fundamental computational development.

In one dimension, derivatives in the x and y coordinate do not carry
indices anymore and Eq. (16) reduces to
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Here the physics of the dissipation kernel D(x) enters via three real-valued
scalar functions, which, keeping in mind that A(x) = D(x)/8T
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Conservation of defining properties in one-dimension
In order for positivity and hermiticity of the density matrix to be con-

served in the Lindblad formalism, the function D(x) in momentum space
needs to be positive and real. As the dissipation kernel is supplied as ex-
ternal input, this property can be explicitly checked for and we will make
sure it is fulfilled in the simulations that follow. Here we focus on the preser-
vation of the trace in Eq. (20), which presents the central challenge in its
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has seen significant progress over the past decade with the development
and refinement of summation-by-parts (SBP) difference operators (for re-
views see e.g. [7, 8, 9]). As these operators build upon the finite difference
approach (although they can be formulated for many other schemes, see
[10, 11, 12, 13, 14, 15, 16, 17, 18]) they are straight forward to implement
and their numerical evaluation cost is low. The fact that they mimic the
integration by parts property of the continuum theory facilitates proofs of
stability, e.g. when deploying SBP operators in time stepping approaches
for computational fluid dynamics [19]. After the development of SBP opera-
tors for first derivatives, higher derivative approximations [20, 21] have been
derived. More recently the SBP technique has also been applied to deriva-
tives in time direction [9, 22, 23]. While in this study only periodic bound-
ary conditions will be deployed, the SBP operators can easily accommodate
non-trivial boundary conditions (in the weak sense) via the Simultaneous
Approximation Term (SAT) technique [24].

To make the paper self-contained, we provide a brief introduction to SBP
operators and recommend [7, 8] for extensive reviews. Let the domain [xL, xR]

be discretized with N+1 equidistant grid points xi = xL+i�x, i = 0, . . . , N ,
where �x = (xR � xL)/N . Denote by u(t) = [u0, . . . , uN ]

> the vector con-
taining the function u(t, x) evaluated at spatial grid points at time t. The
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Starting point: Crank-Nicholson scheme 
(which for non-dissipative dynamics preserves exactly)

⇢(x; y ; t +�t) = exp[�i�tL]⇢(x; y ; t) ⇡
1� 1

2 i�tL
1 + 1

2 i�tL
Pade(1;1)

⇢(x; y ; t)
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shown that the most general equation of motion for ⇢̂S can be written in
terms of the (Gorini–Kossakowski–Sudarshan)-Lindblad equation [5, 6]

d

dt
⇢̂S = �i[H̃S, ⇢̂S] +

X

k
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L̂k⇢̂SL̂

†
k
�

1

2
L̂
†
k
L̂k⇢S �

1
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⇢̂SL̂

†
k
L̂k

⌘
. (5)

This equation describes the in-general non-unitary, i.e. dissipative, time evo-
lution of the subsystem S through its reduced density matrix ⇢̂S. I.e. all
operators here act only on states | Si 2 HS in the subsystem subspace of
the full Hilbert space. The influence of the environment E manifests itself in
the presence of Lindblad operators L̂k, damping rates �k and possible modi-
fications of the subsystem Hamiltonian H̃S 6= ĤS (explicit examples of these
quantities will be derived in Section 2). Formulating the dissipative dynam-
ics in terms of a Lindblad equation is advantageous, as it can be proven that
this equation preserves the main physical properties of the reduced density
matrix, i.e. positivity, hermiticity and unitarity

h 
S
n
|⇢S| 

S
n
i > 0, 8n, ⇢

†
S = ⇢S, Tr[⇢S] = 1. (6)

The preservation of unit trace in particular is important, as the probabil-
ity interpretation of the density matrix rests upon it. The reason is that
understanding the energy, momentum and particle exchange between the
subsystem and environment is of central interest in our study. Thus it is
paramount to ensure that the formulation of the problem does not introduce
artificial loss channels. These may e.g. deplete the probabilities p̃l in Eq. (4)
beyond the true effect induced by the presence of the environment.

In general Eq. (5) can be expressed in the coordinate space basis of the
Hilbert space, where the matrix elements of the reduced density matrix
⇢(x1,x2, . . . ,y2,y1, t) = hx1,x2, . . . |⇢̂S(t)| . . . ,y2,y1i 2 C form a complex
function with a dependence on twice the number of coordinates xi,yi 2 R3

as are particles present in the system. The ensuing partial differential equa-
tion remains linear in the density matrix, but contains both spatially varying
and complex valued coefficients and derivative terms for each coordinate

i
d

dt
hx1,x2, . . . |⇢̂S(t)| . . . ,y2,y1i = i

@

@t
⇢(x1,x2, . . . ,y2,y1, t) (7)

= F

h
x1,x2, . . . ,y2,y1,rx1,rx2, . . . ,ry2,ry1, t

i
⇢(x1,x2, . . . ,y2,y1, t).

The computational challenge, which we address in this paper, lies in dis-
cretizing Eq. (7) and implementing it with a stable and accurate numerical
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approach (although they can be formulated for many other schemes, see
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and their numerical evaluation cost is low. The fact that they mimic the
integration by parts property of the continuum theory facilitates proofs of
stability, e.g. when deploying SBP operators in time stepping approaches
for computational fluid dynamics [19]. After the development of SBP opera-
tors for first derivatives, higher derivative approximations [20, 21] have been
derived. More recently the SBP technique has also been applied to deriva-
tives in time direction [9, 22, 23]. While in this study only periodic bound-
ary conditions will be deployed, the SBP operators can easily accommodate
non-trivial boundary conditions (in the weak sense) via the Simultaneous
Approximation Term (SAT) technique [24].

To make the paper self-contained, we provide a brief introduction to SBP
operators and recommend [7, 8] for extensive reviews. Let the domain [xL, xR]

be discretized with N+1 equidistant grid points xi = xL+i�x, i = 0, . . . , N ,
where �x = (xR � xL)/N . Denote by u(t) = [u0, . . . , uN ]

> the vector con-
taining the function u(t, x) evaluated at spatial grid points at time t. The
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What about the trace conservation? More involved!
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discretization. In the functional language, the trace over quantum states
translates into an integration of ⇢rel(x, y, t) over x and y in the presence of a
delta function �(x� y).

Some of the terms in the trace over the first, second, fourth and fifth line
of Eq. (20) vanish identically, due to the arguments of the V and F functions
being evaluated at x = y, e.g.

T1 =

Z
dx

Z
dy �(x� y)

h
iV (x)� iV (y) + 2F1

⇣
x� y

2

⌘
� 2F1

�
0
�

(22)

+ F1

�
x
�
+ F1

�
y
�
� 2F1

⇣
x+ y

2

⌘i
⇢
rel
(x, y, t) = 0,

T2 =

Z
dx

Z
dy �(x� y)

h
� 2F2

⇣
x+ y

2

⌘� @

@x
+

@

@y

�
+ 2F2

�
x
� @

@x
(23)

+ 2F2

�
y
� @

@y

i
⇢
rel
(x, y, t) = 0.

In addition, the following term from lines four and five vanishes

T3 =

Z
dx

Z
dy�(x� y)

h
2F2

⇣
x� y

2

⌘� @

@x
�

@

@y

�i
⇢
rel
(x, y, t) = 0. (24)

This can be seen by inspecting the properties of the function D(x) and the
definition of F2, in which the first and third derivative of D(x) enters (remem-
ber A(x) = D(x)/8T

2). The derivation of the Lindblad equation from QCD
in [25, 26] leads to a function D(x) that possesses a maximum around the
origin and which is furthermore symmetric around the origin. Thus, when we
take the first and third derivative of D(x) at the origin, both contributions
vanish, i.e. F2(0) = 0. (We ensure that this property is respected in our
numerical simulations, see Eq. (56).)

For some terms in the trace over Eq. (20) we need to apply integration
by parts. Take e.g. the derivatives in the first line

T4 =

Z
dx

Z
dy�(x� y)


i
1

M

@
2

@x2
� i

1

M

@
2

@y2

�
⇢
rel
(x, y, t) = 0. (25)

In order to show that these two contributions cancel each other, we need to be
able to transform the double derivative in x into a corresponding derivative
in y, which is possible due to the delta-function. We get

Z
dx

Z
dy�(x� y)

@
2

@x2
⇢
rel
(x, y, t) =

Z
dx

Z
dy

@
2

@x2
�(x� y)⇢

rel
(x, y, t)

12

In the continuum: proof relies on integration by parts and at first sight on product rule
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In the continuum: proof relies on integration by parts and at first sight on product rule

Need summation by parts difference operators
(trivial for periodic boundary conditions: usual central derivative)

Summation by parts

approximation of the spatial derivative is given by

Du ⇡ ux ,

where ux contains the analytical derivative evaluated on the grid. For two
functions u, v defined on the grid, we have

(u, v)H = u>Hv, kuk2
H
= (u, u)H ,

where the matrix H is diagonal, positive definite and defines an inner prod-
uct and a corresponding norm. Furthermore, the differentiation operator D

satisfies the SBP property

(v, Du)H = �(u, Dv)H + u>(EN � E0)v , (11)

where EN = diag[0, . . . , 1] and E0 = diag[1, . . . , 0].
In the second order case, H is the composite trapezoidal rule and D is

the standard stencil for the symmetric central difference in the interior and
appropriate forward and backward stencils at the boundaries:
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In the periodic case, the operators simplify to
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1 �1 0
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.

The SBP property already provides a crucial ingredient in the formulation
of stable approximations of IBVPs, such as Eq. (7). In order to also preserve
the trace of a relevant class of Lindblad equations, we will show that another
continuum property of derivatives needs to be fulfilled: reparametrization
neutrality.

6

approximation of the spatial derivative is given by

Du ⇡ ux ,

where ux contains the analytical derivative evaluated on the grid. For two
functions u, v defined on the grid, we have

(u, v)H = u>Hv, kuk2
H
= (u, u)H ,

where the matrix H is diagonal, positive definite and defines an inner prod-
uct and a corresponding norm. Furthermore, the differentiation operator D

satisfies the SBP property

(v, Du)H = �(u, Dv)H + u>(EN � E0)v , (11)

where EN = diag[0, . . . , 1] and E0 = diag[1, . . . , 0].
In the second order case, H is the composite trapezoidal rule and D is

the standard stencil for the symmetric central difference in the interior and
appropriate forward and backward stencils at the boundaries:

H = �x

2

666664

1/2

1

. . .
1

1/2

3

777775
, D =

1

2�x

2

666664

�2 2

�1 0 1

. . .
�1 0 1

�2 2

3

777775
.

In the periodic case, the operators simplify to

H = �x

2

666664

1

1

. . .
1

1

3

777775
, D =

1

2�x

2

666664

0 1 �1

�1 0 1

. . .
�1 0 1

1 �1 0

3

777775
.

The SBP property already provides a crucial ingredient in the formulation
of stable approximations of IBVPs, such as Eq. (7). In order to also preserve
the trace of a relevant class of Lindblad equations, we will show that another
continuum property of derivatives needs to be fulfilled: reparametrization
neutrality.

6

approximation of the spatial derivative is given by

Du ⇡ ux ,

where ux contains the analytical derivative evaluated on the grid. For two
functions u, v defined on the grid, we have

(u, v)H = u>Hv, kuk2
H
= (u, u)H ,

where the matrix H is diagonal, positive definite and defines an inner prod-
uct and a corresponding norm. Furthermore, the differentiation operator D

satisfies the SBP property

(v, Du)H = �(u, Dv)H + u>(EN � E0)v , (11)

where EN = diag[0, . . . , 1] and E0 = diag[1, . . . , 0].
In the second order case, H is the composite trapezoidal rule and D is

the standard stencil for the symmetric central difference in the interior and
appropriate forward and backward stencils at the boundaries:

H = �x

2

666664

1/2

1

. . .
1

1/2

3

777775
, D =

1

2�x

2

666664

�2 2

�1 0 1

. . .
�1 0 1

�2 2

3

777775
.

In the periodic case, the operators simplify to

H = �x

2

666664

1

1

. . .
1

1

3

777775
, D =

1

2�x

2

666664

0 1 �1

�1 0 1

. . .
�1 0 1

1 �1 0

3

777775
.

The SBP property already provides a crucial ingredient in the formulation
of stable approximations of IBVPs, such as Eq. (7). In order to also preserve
the trace of a relevant class of Lindblad equations, we will show that another
continuum property of derivatives needs to be fulfilled: reparametrization
neutrality.

6

approximation of the spatial derivative is given by

Du ⇡ ux ,

where ux contains the analytical derivative evaluated on the grid. For two
functions u, v defined on the grid, we have

(u, v)H = u>Hv, kuk2
H
= (u, u)H ,

where the matrix H is diagonal, positive definite and defines an inner prod-
uct and a corresponding norm. Furthermore, the differentiation operator D

satisfies the SBP property

(v, Du)H = �(u, Dv)H + u>(EN � E0)v , (11)

where EN = diag[0, . . . , 1] and E0 = diag[1, . . . , 0].
In the second order case, H is the composite trapezoidal rule and D is

the standard stencil for the symmetric central difference in the interior and
appropriate forward and backward stencils at the boundaries:

H = �x

2

666664

1/2

1

. . .
1

1/2

3

777775
, D =

1

2�x

2

666664

�2 2

�1 0 1

. . .
�1 0 1

�2 2

3

777775
.

In the periodic case, the operators simplify to

H = �x

2

666664

1

1

. . .
1

1

3

777775
, D =

1

2�x

2

666664

0 1 �1

�1 0 1

. . .
�1 0 1

1 �1 0

3

777775
.

The SBP property already provides a crucial ingredient in the formulation
of stable approximations of IBVPs, such as Eq. (7). In order to also preserve
the trace of a relevant class of Lindblad equations, we will show that another
continuum property of derivatives needs to be fulfilled: reparametrization
neutrality.

6

Function:

Integration
scheme/BC:

SBP property:

u = (u(x0); u(x1); : : :)
<latexit sha1_base64="Ex8vXsCKzHDXHT9xDsCf++/REK8="></latexit>

se
e 

e.
g.

 D
. C

. D
. R

. F
er

ná
nd

ez
, e

t.a
l.,

 
C

om
pu

te
rs

 &
 F

lu
id

s 
95

 (2
01

4)
 1

71
–1

96
.



ALEXANDER ROTHKOPF - UIS

Trace conservation

4th NPACT Meeting – August 4th 2020 – UiA

RECENT PROGRESS ON QUARKONIUM REAL-TIME DYNAMICS

discretization. In the functional language, the trace over quantum states
translates into an integration of ⇢rel(x, y, t) over x and y in the presence of a
delta function �(x� y).
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In addition, the following term from lines four and five vanishes
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This can be seen by inspecting the properties of the function D(x) and the
definition of F2, in which the first and third derivative of D(x) enters (remem-
ber A(x) = D(x)/8T

2). The derivation of the Lindblad equation from QCD
in [25, 26] leads to a function D(x) that possesses a maximum around the
origin and which is furthermore symmetric around the origin. Thus, when we
take the first and third derivative of D(x) at the origin, both contributions
vanish, i.e. F2(0) = 0. (We ensure that this property is respected in our
numerical simulations, see Eq. (56).)

For some terms in the trace over Eq. (20) we need to apply integration
by parts. Take e.g. the derivatives in the first line
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In order to show that these two contributions cancel each other, we need to be
able to transform the double derivative in x into a corresponding derivative
in y, which is possible due to the delta-function. We get
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In the continuum: proof relies on integration by parts and at first sight on product rule

Product rule broken by finite differences, actually 
only reparameterization invariance needed!
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Need summation by parts difference operators
(trivial for periodic boundary conditions: usual central derivative)

Summation by parts

approximation of the spatial derivative is given by
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where ux contains the analytical derivative evaluated on the grid. For two
functions u, v defined on the grid, we have

(u, v)H = u>Hv, kuk2
H
= (u, u)H ,

where the matrix H is diagonal, positive definite and defines an inner prod-
uct and a corresponding norm. Furthermore, the differentiation operator D

satisfies the SBP property

(v, Du)H = �(u, Dv)H + u>(EN � E0)v , (11)

where EN = diag[0, . . . , 1] and E0 = diag[1, . . . , 0].
In the second order case, H is the composite trapezoidal rule and D is
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The SBP property already provides a crucial ingredient in the formulation
of stable approximations of IBVPs, such as Eq. (7). In order to also preserve
the trace of a relevant class of Lindblad equations, we will show that another
continuum property of derivatives needs to be fulfilled: reparametrization
neutrality.
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Function:

Integration
scheme/BC:

SBP property:

u = (u(x0); u(x1); : : :)
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discretization. In the functional language, the trace over quantum states
translates into an integration of ⇢rel(x, y, t) over x and y in the presence of a
delta function �(x� y).

Some of the terms in the trace over the first, second, fourth and fifth line
of Eq. (20) vanish identically, due to the arguments of the V and F functions
being evaluated at x = y, e.g.
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In addition, the following term from lines four and five vanishes
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This can be seen by inspecting the properties of the function D(x) and the
definition of F2, in which the first and third derivative of D(x) enters (remem-
ber A(x) = D(x)/8T

2). The derivation of the Lindblad equation from QCD
in [25, 26] leads to a function D(x) that possesses a maximum around the
origin and which is furthermore symmetric around the origin. Thus, when we
take the first and third derivative of D(x) at the origin, both contributions
vanish, i.e. F2(0) = 0. (We ensure that this property is respected in our
numerical simulations, see Eq. (56).)

For some terms in the trace over Eq. (20) we need to apply integration
by parts. Take e.g. the derivatives in the first line
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In order to show that these two contributions cancel each other, we need to be
able to transform the double derivative in x into a corresponding derivative
in y, which is possible due to the delta-function. We get
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In the continuum: proof relies on integration by parts and at first sight on product rule

Product rule broken by finite differences, actually 
only reparameterization invariance needed!
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function only depends on z = x� y, which invites us to introduce
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Let us have a look at how the reparametrization property of the differen-
tials of the two sets of coordinates in the continuum can be used to rewrite
the mixed derivative term in Eq. (27). We obtain
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The result of Eq. (30) can be directly applied to the mixed derivative
term T61 in Eq. (27):
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Since z
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/2 = x = y along the trace, inserting Eq. (31) into Eq. (27) yields
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In Eq. (32), we carried out one integration by parts in both x and y. Since
�(x� y) only depends on z and not z0, the derivative @/@z

0 after integration
by parts acts solely on the F3 term.
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In Eq. (32), we carried out one integration by parts in both x and y. Since
�(x� y) only depends on z and not z0, the derivative @/@z

0 after integration
by parts acts solely on the F3 term.
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z = x � y;

z 0 = x + y
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where the matrix H is diagonal, positive definite and defines an inner prod-
uct and a corresponding norm. Furthermore, the differentiation operator D
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The SBP property already provides a crucial ingredient in the formulation
of stable approximations of IBVPs, such as Eq. (7). In order to also preserve
the trace of a relevant class of Lindblad equations, we will show that another
continuum property of derivatives needs to be fulfilled: reparametrization
neutrality.
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Function:

Integration
scheme/BC:

SBP property:

u = (u(x0); u(x1); : : :)
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discretization. In the functional language, the trace over quantum states
translates into an integration of ⇢rel(x, y, t) over x and y in the presence of a
delta function �(x� y).

Some of the terms in the trace over the first, second, fourth and fifth line
of Eq. (20) vanish identically, due to the arguments of the V and F functions
being evaluated at x = y, e.g.
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In addition, the following term from lines four and five vanishes
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This can be seen by inspecting the properties of the function D(x) and the
definition of F2, in which the first and third derivative of D(x) enters (remem-
ber A(x) = D(x)/8T

2). The derivation of the Lindblad equation from QCD
in [25, 26] leads to a function D(x) that possesses a maximum around the
origin and which is furthermore symmetric around the origin. Thus, when we
take the first and third derivative of D(x) at the origin, both contributions
vanish, i.e. F2(0) = 0. (We ensure that this property is respected in our
numerical simulations, see Eq. (56).)

For some terms in the trace over Eq. (20) we need to apply integration
by parts. Take e.g. the derivatives in the first line
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In order to show that these two contributions cancel each other, we need to be
able to transform the double derivative in x into a corresponding derivative
in y, which is possible due to the delta-function. We get

Z
dx

Z
dy�(x� y)

@
2

@x2
⇢
rel
(x, y, t) =

Z
dx

Z
dy

@
2

@x2
�(x� y)⇢

rel
(x, y, t)

12

In the continuum: proof relies on integration by parts and at first sight on product rule

Product rule broken by finite differences, actually 
only reparameterization invariance needed!
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function only depends on z = x� y, which invites us to introduce
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Let us have a look at how the reparametrization property of the differen-
tials of the two sets of coordinates in the continuum can be used to rewrite
the mixed derivative term in Eq. (27). We obtain
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The result of Eq. (30) can be directly applied to the mixed derivative
term T61 in Eq. (27):
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Since z

0
/2 = x = y along the trace, inserting Eq. (31) into Eq. (27) yields
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In Eq. (32), we carried out one integration by parts in both x and y. Since
�(x� y) only depends on z and not z0, the derivative @/@z

0 after integration
by parts acts solely on the F3 term.
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In Eq. (32), we carried out one integration by parts in both x and y. Since
�(x� y) only depends on z and not z0, the derivative @/@z

0 after integration
by parts acts solely on the F3 term.
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z = x � y;

z 0 = x + y
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Need summation by parts difference operators
(trivial for periodic boundary conditions: usual central derivative)

Summation by parts

approximation of the spatial derivative is given by

Du ⇡ ux ,

where ux contains the analytical derivative evaluated on the grid. For two
functions u, v defined on the grid, we have

(u, v)H = u>Hv, kuk2
H
= (u, u)H ,

where the matrix H is diagonal, positive definite and defines an inner prod-
uct and a corresponding norm. Furthermore, the differentiation operator D

satisfies the SBP property

(v, Du)H = �(u, Dv)H + u>(EN � E0)v , (11)

where EN = diag[0, . . . , 1] and E0 = diag[1, . . . , 0].
In the second order case, H is the composite trapezoidal rule and D is

the standard stencil for the symmetric central difference in the interior and
appropriate forward and backward stencils at the boundaries:
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The SBP property already provides a crucial ingredient in the formulation
of stable approximations of IBVPs, such as Eq. (7). In order to also preserve
the trace of a relevant class of Lindblad equations, we will show that another
continuum property of derivatives needs to be fulfilled: reparametrization
neutrality.
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Function:

Integration
scheme/BC:

SBP property:

u = (u(x0); u(x1); : : :)
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Solution: a reparameterization invariant SBP finite difference operator 
O. Ålund, Y. Akamatsu, F. Laurén, T.Miura, J. Nordström, A.R. arXiv:2004.04406
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discretization. In the functional language, the trace over quantum states
translates into an integration of ⇢rel(x, y, t) over x and y in the presence of a
delta function �(x� y).

Some of the terms in the trace over the first, second, fourth and fifth line
of Eq. (20) vanish identically, due to the arguments of the V and F functions
being evaluated at x = y, e.g.
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In addition, the following term from lines four and five vanishes
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This can be seen by inspecting the properties of the function D(x) and the
definition of F2, in which the first and third derivative of D(x) enters (remem-
ber A(x) = D(x)/8T

2). The derivation of the Lindblad equation from QCD
in [25, 26] leads to a function D(x) that possesses a maximum around the
origin and which is furthermore symmetric around the origin. Thus, when we
take the first and third derivative of D(x) at the origin, both contributions
vanish, i.e. F2(0) = 0. (We ensure that this property is respected in our
numerical simulations, see Eq. (56).)

For some terms in the trace over Eq. (20) we need to apply integration
by parts. Take e.g. the derivatives in the first line
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able to transform the double derivative in x into a corresponding derivative
in y, which is possible due to the delta-function. We get
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In the continuum: proof relies on integration by parts and at first sight on product rule

Product rule broken by finite differences, actually 
only reparameterization invariance needed!
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Let us have a look at how the reparametrization property of the differen-
tials of the two sets of coordinates in the continuum can be used to rewrite
the mixed derivative term in Eq. (27). We obtain
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The result of Eq. (30) can be directly applied to the mixed derivative
term T61 in Eq. (27):
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Since z
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/2 = x = y along the trace, inserting Eq. (31) into Eq. (27) yields
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In Eq. (32), we carried out one integration by parts in both x and y. Since
�(x� y) only depends on z and not z0, the derivative @/@z

0 after integration
by parts acts solely on the F3 term.
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The result of Eq. (30) can be directly applied to the mixed derivative
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/2 = x = y along the trace, inserting Eq. (31) into Eq. (27) yields
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In Eq. (32), we carried out one integration by parts in both x and y. Since
�(x� y) only depends on z and not z0, the derivative @/@z

0 after integration
by parts acts solely on the F3 term.
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Need summation by parts difference operators
(trivial for periodic boundary conditions: usual central derivative)

Summation by parts

approximation of the spatial derivative is given by

Du ⇡ ux ,

where ux contains the analytical derivative evaluated on the grid. For two
functions u, v defined on the grid, we have

(u, v)H = u>Hv, kuk2
H
= (u, u)H ,

where the matrix H is diagonal, positive definite and defines an inner prod-
uct and a corresponding norm. Furthermore, the differentiation operator D

satisfies the SBP property

(v, Du)H = �(u, Dv)H + u>(EN � E0)v , (11)

where EN = diag[0, . . . , 1] and E0 = diag[1, . . . , 0].
In the second order case, H is the composite trapezoidal rule and D is

the standard stencil for the symmetric central difference in the interior and
appropriate forward and backward stencils at the boundaries:
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The SBP property already provides a crucial ingredient in the formulation
of stable approximations of IBVPs, such as Eq. (7). In order to also preserve
the trace of a relevant class of Lindblad equations, we will show that another
continuum property of derivatives needs to be fulfilled: reparametrization
neutrality.
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Function:

Integration
scheme/BC:

SBP property:

u = (u(x0); u(x1); : : :)
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Solution: a reparameterization invariant SBP finite difference operator 
O. Ålund, Y. Akamatsu, F. Laurén, T.Miura, J. Nordström, A.R. arXiv:2004.04406
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discretization. In the functional language, the trace over quantum states
translates into an integration of ⇢rel(x, y, t) over x and y in the presence of a
delta function �(x� y).

Some of the terms in the trace over the first, second, fourth and fifth line
of Eq. (20) vanish identically, due to the arguments of the V and F functions
being evaluated at x = y, e.g.
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In addition, the following term from lines four and five vanishes
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⇢
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This can be seen by inspecting the properties of the function D(x) and the
definition of F2, in which the first and third derivative of D(x) enters (remem-
ber A(x) = D(x)/8T

2). The derivation of the Lindblad equation from QCD
in [25, 26] leads to a function D(x) that possesses a maximum around the
origin and which is furthermore symmetric around the origin. Thus, when we
take the first and third derivative of D(x) at the origin, both contributions
vanish, i.e. F2(0) = 0. (We ensure that this property is respected in our
numerical simulations, see Eq. (56).)

For some terms in the trace over Eq. (20) we need to apply integration
by parts. Take e.g. the derivatives in the first line
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Z
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In order to show that these two contributions cancel each other, we need to be
able to transform the double derivative in x into a corresponding derivative
in y, which is possible due to the delta-function. We get
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In the continuum: proof relies on integration by parts and at first sight on product rule

Product rule broken by finite differences, actually 
only reparameterization invariance needed!
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Let us have a look at how the reparametrization property of the differen-
tials of the two sets of coordinates in the continuum can be used to rewrite
the mixed derivative term in Eq. (27). We obtain
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The result of Eq. (30) can be directly applied to the mixed derivative
term T61 in Eq. (27):
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Since z

0
/2 = x = y along the trace, inserting Eq. (31) into Eq. (27) yields
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In Eq. (32), we carried out one integration by parts in both x and y. Since
�(x� y) only depends on z and not z0, the derivative @/@z

0 after integration
by parts acts solely on the F3 term.
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The result of Eq. (30) can be directly applied to the mixed derivative
term T61 in Eq. (27):
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Since z

0
/2 = x = y along the trace, inserting Eq. (31) into Eq. (27) yields
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In Eq. (32), we carried out one integration by parts in both x and y. Since
�(x� y) only depends on z and not z0, the derivative @/@z

0 after integration
by parts acts solely on the F3 term.
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Need summation by parts difference operators
(trivial for periodic boundary conditions: usual central derivative)
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The SBP property already provides a crucial ingredient in the formulation
of stable approximations of IBVPs, such as Eq. (7). In order to also preserve
the trace of a relevant class of Lindblad equations, we will show that another
continuum property of derivatives needs to be fulfilled: reparametrization
neutrality.
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Function:

Integration
scheme/BC:

SBP property:

u = (u(x0); u(x1); : : :)
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Solution: a reparameterization invariant SBP finite difference operator 
O. Ålund, Y. Akamatsu, F. Laurén, T.Miura, J. Nordström, A.R. arXiv:2004.04406
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discretization. In the functional language, the trace over quantum states
translates into an integration of ⇢rel(x, y, t) over x and y in the presence of a
delta function �(x� y).

Some of the terms in the trace over the first, second, fourth and fifth line
of Eq. (20) vanish identically, due to the arguments of the V and F functions
being evaluated at x = y, e.g.
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Z
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In addition, the following term from lines four and five vanishes
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This can be seen by inspecting the properties of the function D(x) and the
definition of F2, in which the first and third derivative of D(x) enters (remem-
ber A(x) = D(x)/8T

2). The derivation of the Lindblad equation from QCD
in [25, 26] leads to a function D(x) that possesses a maximum around the
origin and which is furthermore symmetric around the origin. Thus, when we
take the first and third derivative of D(x) at the origin, both contributions
vanish, i.e. F2(0) = 0. (We ensure that this property is respected in our
numerical simulations, see Eq. (56).)

For some terms in the trace over Eq. (20) we need to apply integration
by parts. Take e.g. the derivatives in the first line
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In order to show that these two contributions cancel each other, we need to be
able to transform the double derivative in x into a corresponding derivative
in y, which is possible due to the delta-function. We get
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In the continuum: proof relies on integration by parts and at first sight on product rule

Product rule broken by finite differences, actually 
only reparameterization invariance needed!
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function only depends on z = x� y, which invites us to introduce
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Let us have a look at how the reparametrization property of the differen-
tials of the two sets of coordinates in the continuum can be used to rewrite
the mixed derivative term in Eq. (27). We obtain
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The result of Eq. (30) can be directly applied to the mixed derivative
term T61 in Eq. (27):
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Since z
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/2 = x = y along the trace, inserting Eq. (31) into Eq. (27) yields
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In Eq. (32), we carried out one integration by parts in both x and y. Since
�(x� y) only depends on z and not z0, the derivative @/@z

0 after integration
by parts acts solely on the F3 term.
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In Eq. (32), we carried out one integration by parts in both x and y. Since
�(x� y) only depends on z and not z0, the derivative @/@z

0 after integration
by parts acts solely on the F3 term.
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(trivial for periodic boundary conditions: usual central derivative)
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approximation of the spatial derivative is given by

Du ⇡ ux ,

where ux contains the analytical derivative evaluated on the grid. For two
functions u, v defined on the grid, we have

(u, v)H = u>Hv, kuk2
H
= (u, u)H ,

where the matrix H is diagonal, positive definite and defines an inner prod-
uct and a corresponding norm. Furthermore, the differentiation operator D

satisfies the SBP property

(v, Du)H = �(u, Dv)H + u>(EN � E0)v , (11)

where EN = diag[0, . . . , 1] and E0 = diag[1, . . . , 0].
In the second order case, H is the composite trapezoidal rule and D is
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The SBP property already provides a crucial ingredient in the formulation
of stable approximations of IBVPs, such as Eq. (7). In order to also preserve
the trace of a relevant class of Lindblad equations, we will show that another
continuum property of derivatives needs to be fulfilled: reparametrization
neutrality.
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Solution: a reparameterization invariant SBP finite difference operator 
O. Ålund, Y. Akamatsu, F. Laurén, T.Miura, J. Nordström, A.R. arXiv:2004.04406
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Curse of dimensionality comes back to haunt
us in 3d: density matrix is a 6d object.
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Challenge II: 
The heavy-quark potential in the
classical limit
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Quantum computation
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Real-part of the heavy-quark potential from the Gauss-Law
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Static quark interactions can be
described by a potential with a
real and imaginary part

Classical computation

Interquark potential shows only imaginary 
part but no real part.

Manifestation of weakend quark 
binding and kicks with hot 
environment partons.
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Obviously, no confinement in a classical
theory but attractive interactions possible
in a non-linear Maxwell-like theory (YM).

Confusing since classical Maxwell theory
predicts Debye screened potential

see e.g. Laine, Philipsen, Tassler, JHEP 09 (2007) 066
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Consider a color neutral pair of static charges (e.g. red-antired) at position x0,x1
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Evaluating the Wilson correlator in the path integral amounts to reweighting from
a theory without static sources to a theory with static sources.
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Evaluating the Wilson correlator in the path integral amounts to reweighting from
a theory without static sources to a theory with static sources.

If Wilson loop follows a Schrödinger-like equation: definition of potential possible
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In the literature: compute Wilson loop
in a thermal ensemble of gauge fields
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Figure 4: The classical Wilson loop, measured with classical lattice gauge theory simulations, as a
function of time in units of the spatial lattice spacing, for β = 16, N = 12, Nc = 3.

The technical implementation of our simulation follows earlier work [17, 18]. However,

to speed up thermalization, we have implemented the idea mentioned in ref. [23], whereby

the link variables Ui are first pre-thermalized with regular Monte Carlo techniques in the

dimensionally reduced SU(3) + adjoint Higgs theory (we use the code described in ref. [24]).

Since it is non-trivial to match the parameters of that theory and our effective theory exactly,

those configurations are not yet fully thermalized. However, this is not a problem, they now

need only to be evolved for a short time à la refs. [17, 18], in order to reach the correctly

thermalized configurations corresponding to the exact parameters of Eq. (4.1).

We have carried out simulations mostly with β = 16; since analytic HCL predictions also

refer to a finite value of β, there is no need to carry out a continuum extrapolation (cf.

Fig. 3). As typical lattice extents we have used N = 12 and N = 16; the difference of the

results between these two is only at the percent level (cf. Table 1 below). The time variable

is discretised with a spacing at, with a value at/a = 0.01; measurements are recorded every

10th time step. We stress that thermalization is only carried out in the beginning, while the

subsequent time evolution is deterministic and follows Eqs. (4.3), (4.4).

A representative result for the classical Wilson loop is shown in Fig. 4. The corresponding

potential, extracted from Eq. (4.6), is shown in Fig. 5. The result can be compared with

Fig. 2, showing the HCL-resummed perturbative prediction with the same parameter values.

The general shapes are seen to match each other to a remarkable degree. On closer inspec-
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refer to a finite value of β, there is no need to carry out a continuum extrapolation (cf.

Fig. 3). As typical lattice extents we have used N = 12 and N = 16; the difference of the

results between these two is only at the percent level (cf. Table 1 below). The time variable

is discretised with a spacing at, with a value at/a = 0.01; measurements are recorded every

10th time step. We stress that thermalization is only carried out in the beginning, while the

subsequent time evolution is deterministic and follows Eqs. (4.3), (4.4).

A representative result for the classical Wilson loop is shown in Fig. 4. The corresponding

potential, extracted from Eq. (4.6), is shown in Fig. 5. The result can be compared with

Fig. 2, showing the HCL-resummed perturbative prediction with the same parameter values.
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Access to real-time dynamics via open-quantum-systems framework
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Push the master equation simulation to full three-dimensions

Develop real-time simulations for finite mass heavy quarks (lattice NRQCD)
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New numerical techniques to simulate 2-body master equations accurately:
reparametrization-neutral summation-by-parts finite difference operator

A lot of things remain to be done, e.g:

Improve the extraction of spectral functions from lattice QCD (Gaurang’s talk) 

Access to real-time dynamics via open-quantum-systems framework

Quarkonium is a fascinating laboratory for the strong interactions

Push the master equation simulation to full three-dimensions

Develop real-time simulations for finite mass heavy quarks (lattice NRQCD)

Thank you for your attention
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Potential emerges at late times: coarse graining of multiple gluon exchanges

W⇤(R, t) =
Z1

-1
d! e-i!t ⇢⇤(R,!)

ω

ρ ☐
(R

,ω
)

Γ0

ω0 well defined V(R) 
if low lying Breit-

Wigner present in 
Wilson loop 

spectral function
For technical details see

Y.B., A.R. PRD86 (2012) 051503
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Quarkonium in-medium physics
color singlet color octet

ρsinglet(ω)

lattice QCD spectral function
(fully non-perturbative)

Medium effects

T=0 Hamitlonian
eigenstates

T>0 Hamiltonian 
eigenstates

changes QQ Hamiltonian (Matsui&Satz ‘86)

acts as a radiation field: inducing
absorption & stimulated emission

Psinglet

t

initial value problem

color singlet color octet

density matrix master equation
(non-perturbative in progress)

thermal equilibrium

T>0

Challenge I: Derive a master equation from QCD and solve it numerically

Challenge II: Establish whether an intuitive potential picture is applicable 
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⌦
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+
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νTa] Pij=Ui(x)Uj(x+i)U†
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x,y,z
Δt

Δt

Δt

Ui Ei

A0=0 a

In practice to solve e.o.m. turn to Hamiltonian picture Grigriev, Rubakov Nucl. Phys. B299 1988
Ambjorn et. al. Nucl. Phys. B353 1991

G(x, t) ⌘
X

x

h
Ei(x, t)-U-i(x, t)Ei(x - i, t)U†

-i(x, t)
i
= 0

Gauss constraintHamiltonian

Choose temporal gauge U0=1 to decouple individual time slices

Degrees of freedom: SU(3) valued spatial link variables Ui and su(3) valued derivatives Ei
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The Minkowski time Wilson action for SU(3)

S[U] =
2

g2

X

x

⌦
-

a

at

X

i

ReTr
h
P0i - 1

i
+

at

a

X

i<j

ReTr
h
Pij - 1

i↵

Uν=exp[igaAa
νTa] Pij=Ui(x)Uj(x+i)U†

i (x+j)U†
jd(x)

t

x,y,z
Ui

U0

a

P0i

Hamiltonian equations of motion in coordinate space: 

x,y,z
Δt

Δt

Δt

Ui Ei

A0=0 a

In practice to solve e.o.m. turn to Hamiltonian picture Grigriev, Rubakov Nucl. Phys. B299 1988
Ambjorn et. al. Nucl. Phys. B353 1991

G(x, t) ⌘
X

x

h
Ei(x, t)-U-i(x, t)Ei(x - i, t)U†

-i(x, t)
i
= 0

Gauss constraintHamiltonian

Choose temporal gauge U0=1 to decouple individual time slices

Degrees of freedom: SU(3) valued spatial link variables Ui and su(3) valued derivatives Ei


