QFT and Invariants of Exotic Geometries

Eirik Eik Svanes University of Stavanger eirik.e.svanes@uis.no

N-PACT. 2020, Kristiansand

QFT and Invariants - 1

DISCLAIMER

Introduction	
Invariants	
invarianto	_
Conclusions	

DISCLAIMER: Officially, I am a mathematical physicist. My work is often not connected with reality in any meaningful sense.

DISCLAIMER

Introduction
Invariants
Conclusions

DISCLAIMER: Officially, I am a mathematical physicist. My work is often not connected with reality in any meaningful sense.

Can lead to some (valid) complaints:

- What is it good for, if not testable or even a description of reality?
- If not physics, then mathematics?
- How can methods of physics with no rigorous mathematical basis (e.g. path integral) be used to derive mathematically sound results?

DISCLAIMER

Introduction	
Invariants	
Conclusions	

DISCLAIMER: Officially, I am a mathematical physicist. My work is often not connected with reality in any meaningful sense.

Can lead to some (valid) complaints:

- What is it good for, if not testable or even a description of reality?
- If not physics, then mathematics?
- How can methods of physics with no rigorous mathematical basis (e.g. path integral) be used to derive mathematically sound results?

Tentative responses:

- The physics often leads one towards deep conjectures about geometry (e.g. Mirror Symmetry).
- Though the methods are mathematically iffy, the end results might still make sense (e.g. well-defined invariants).
- Personal hope: To connect the mathematics with phenomenological model building in particle physics and string phenomenology.

Introd	luction
1111100	luction

Kaluza-Klein and String Compactifications

Invariants

Conclusions

Introduction

Kaluza-Klein and String Compactifications

Introduction

Kaluza-Klein and String Compactifications

Invariants

Conclusions

String Theory is a higher dimensional UV-completion for the unification of the fundamental forces (including gravity). Playground for KK thories.

String Phenomenology: We postulate a space-time of the form

$$M_D = M_4 \times X_n , \quad \mathrm{d}s^2 = g_{\mu\nu} \mathrm{d}x^\mu \mathrm{d}x^\nu + g_{ab} \mathrm{d}x^a \mathrm{d}x^b$$

where D = 4 + n. Here M_4 is the external space-time and X_n is usually taken as compact and small.

Kaluza-Klein and String Compactifications

Introduction

Kaluza-Klein and String Compactifications

Invariants

Conclusions

String Theory is a higher dimensional UV-completion for the unification of the fundamental forces (including gravity). Playground for KK thories.

String Phenomenology: We postulate a space-time of the form

 $M_D = M_4 \times X_n , \quad \mathrm{d}s^2 = g_{\mu\nu} \mathrm{d}x^\mu \mathrm{d}x^\nu + g_{ab} \mathrm{d}x^a \mathrm{d}x^b$

where D = 4 + n. Here M_4 is the external space-time and X_n is usually taken as compact and small.

Idea:

- **D**eformations of X_n geometry \leftrightarrow Fields in 4d geometry.
- Look for 4d theories containing the Standard Model spectrum.
- Need mechanism to lift additional massless fields out of theory (moduli stabilisation). This is the difficult bit!
- In particular, very hard to cook up models without runaway directions where X_n decompactifies.
- Geometric invariants can be useful in this regard.

QFT and Invariants - 4

Introduction	I
Invariants	
Threshold	Cori

Threshold Corrections Topological QFT and invariants

Chern-Simons

Other examples

Computing Invariants

Conclusions

Invariants and Threshold Corrections

Threshold Corrections

Introduction Invariants Threshold Corrections Topological QFT and invariants Chern-Simons Other examples Computing Invariants

Conclusions

In string phenomenology, one often ignores (quantum) effects of fields propagating in the internal directions of X_n .

- Hard then to stabilize all moduli (runaway directions + extra massless fields).
- These quantum effects must eventually be included to have a consistent model.

Threshold Corrections

Introduction Invariants

Threshold Corrections Topological QFT and invariants

- Chern-Simons
- Other examples
- Computing Invariants

Conclusions

In string phenomenology, one often ignores (quantum) effects of fields propagating in the internal directions of X_n .

- Hard then to stabilize all moduli (runaway directions + extra massless fields).
- These quantum effects must eventually be included to have a consistent model.

Threshold corrections:

- Such internal quantum effect are colloquially called threshold corrections.
- Often required to get the right RG-flow of effective field theory couplings, etc.
- Might help with moduli stabilisation: Generate non-perturbative couplings in effective physics.
- Drawback: Often hard to compute.

Introduction
Invariants
Threshold Corrections
Topological QFT and
invariants
Chern-Simons
Other examples
Computing Invariants
Conclusions

In special cases (often with supersymmetry, etc) the computation of threshold corrections simplify: They derive from **topological QFTs**.

Introduction Invariants

Threshold Corrections Topological QFT and invariants

Chern-Simons

Other examples

Computing Invariants

Conclusions

In special cases (often with supersymmetry, etc) the computation of threshold corrections simplify: They derive from **topological QFTs**.

The gist:

- The internal space X_n is equipped with some geometric structure Ψ (gauge-field, metric, complex structure, etc).
- The geometric structure Ψ is governed by some topological action $S(\Psi)$ deriving from the (stringy) higher-dimensional supergravity.
- Moduli space: Space of solutions of Ψ to equations of motion $\delta S(\Psi) = 0$.

Introduction Invariants

Threshold Corrections Topological QFT and invariants

Chern-Simons

Other examples

Computing Invariants

Conclusions

In special cases (often with supersymmetry, etc) the computation of threshold corrections simplify: They derive from **topological QFTs**.

The gist:

- The internal space X_n is equipped with some geometric structure Ψ (gauge-field, metric, complex structure, etc).
- The geometric structure Ψ is governed by some topological action $S(\Psi)$ deriving from the (stringy) higher-dimensional supergravity.
- Moduli space: Space of solutions of Ψ to equations of motion $\delta S(\Psi) = 0$.

Quantum corrections: We quatize $S(\Psi)$

$$Z(X_n) = \int \mathcal{D}\Psi \, e^{iS(\Psi)}$$

Note: This is a **topological invariant** associated to the geometry X_n (integrate over geometric structures). Threshold corrections are associated to such topological invariants of internal geometries.

Introduction
Invariants
Threshold Corrections Topological QFT and invariants
Chern-Simons
Other examples
Computing Invariants
Conclusions

Chern-Simons (CS) theory appears in string compactifications when higher dimensional objects called branes are wrapped on sub-manifolds M_3 within X_n .

Introduction

Invariants

Threshold Corrections Topological QFT and invariants

```
Chern-Simons
```

Other examples

Computing Invariants

Conclusions

Chern-Simons (CS) theory appears in string compactifications when higher dimensional objects called branes are wrapped on sub-manifolds M_3 within X_n .

CS theory can be defined for a (curved) three-dimensional manifold M_3 , equipped with a gauge theory and associated gauge connection A_a :

$$S_{CS}(A) = \int_{M_3} \operatorname{tr} \left(A_a \partial_b A_c + \frac{2}{3} A_a A_b A_c \right) \epsilon^{abc} \,.$$

Note: CS-theory is defined without a metric \Rightarrow topological theory.

Introduction

Invariants

Threshold Corrections Topological QFT and invariants

```
Chern-Simons
```

Other examples

Computing Invariants

Conclusions

Chern-Simons (CS) theory appears in string compactifications when higher dimensional objects called branes are wrapped on sub-manifolds M_3 within X_n .

CS theory can be defined for a (curved) three-dimensional manifold M_3 , equipped with a gauge theory and associated gauge connection A_a :

$$S_{CS}(A) = \int_{M_3} \operatorname{tr} \left(A_a \partial_b A_c + \frac{2}{3} A_a A_b A_c \right) \epsilon^{abc} \,.$$

Note: CS-theory is defined without a metric \Rightarrow topological theory.

Equations of motion (suppressed gauge indecies):

$$F_{ab} = \partial_{[a}A_{b]} + A_{[a}A_{b]} = 0.$$

These correspond to flat gauge bundles.

The moduli space of flat gauge bundles on a compact space is finite-dimensional. Gives rise to a finite number of fields in the effective theory.

Example: Chern-Simons Theory

Introduction

Invariants

Threshold Corrections Topological QFT and invariants

Chern-Simons

Other examples

Computing Invariants

Conclusions

We define the partition function for a gauge group G (e.g. G = SU(N))

$$Z(M_3,G) = \int \mathcal{D}A \, e^{iS(A)}$$

No metric dependence $\Rightarrow Z(M_3, G)$ should be an **invariant** [Witten '89, Reshetikhin-Turaev '91], depending only on the topological date of M_3 and the gauge group G.

Introduction

Invariants

Threshold Corrections Topological QFT and invariants

Chern-Simons

Other examples

Computing Invariants

Conclusions

We define the partition function for a gauge group G (e.g. G = SU(N))

$$Z(M_3,G) = \int \mathcal{D}A \, e^{iS(A)} \, .$$

No metric dependence $\Rightarrow Z(M_3, G)$ should be an **invariant** [Witten '89, Reshetikhin-Turaev '91], depending only on the topological date of M_3 and the gauge group G.

One can use $Z(M_3, G)$ to extract other interesting invariants of M_3 . E.g. the one-loop partition function [Witten '89], and:

- A perturbative computation of $Z(M_3, G)$ leads to the definition of **universal perturbative invariants**, independent of the gauge group [Axelrod-Singer '91].
- CS theory is related to the topological open string [Witten '92] \Rightarrow relations to Gromov-Witten invariants by open-closed string duality [Vafa '01, ..].
- Expectation values of Wilson loops: Knot invariants proportional to the Jones Polynomial of the knot [Witten '89, ..].

The study of quantum CS theory is a fruitful endeavour to this date.

Other examples

Invariants

Introduction

Threshold Corrections Topological QFT and invariants

Chern-Simons

Other examples

Computing Invariants

Conclusions

There are many other generalisation and (quasi) topological theories which deserve mentioning:

Holomorphic Chern-Simons theory (on six-dimensional Calabi-Yau manifolds): Give rise to Donaldson-Thomas invariants.

Different types of volume (Hitchin) functionals in ordinary, generalised and exceptional geometry.

- Kodaira-Spencer gravity and Wittens topological strings.
- Generalisations combining gauge and gravitational degrees of freedom (my own work in heterotic string theory).

These all appear in different parts of string geometry, sometimes with equivalences (string dualities) between them.

Computing Invariants

Introduction	•
Invariants	•
Threshold Corrections Topological QFT and invariants	•
Chern-Simons	•
Other examples	•
Computing Invariants	•
Conclusions	-

Explicit computation (resulting in actual numbers) for invariants can be very tricky.

Exact methods in QFT such as localisation can be useful. Usually requires extended supersymmetry implying a more rigid geometric structure.

Localisation: Reduces formal expression (path integrals) to integrals over finite dimensional moduli space of classical solutions which can in principle be performed (and sometimes is).

Computing Invariants

Introduction Invariants Threshold Corrections Topological QFT and invariants Chern-Simons Other examples Computing Invariants

Conclusions

Explicit computation (resulting in actual numbers) for invariants can be very tricky.

Exact methods in QFT such as localisation can be useful. Usually requires extended supersymmetry implying a more rigid geometric structure.

Localisation: Reduces formal expression (path integrals) to integrals over finite dimensional moduli space of classical solutions which can in principle be performed (and sometimes is).

First step: One-loop computation. Compute the partition function of the quadratic approximation to the action. This action Is usually of the form

$$S(\Psi) = \int_{X_n} \delta \Psi^* \Delta \delta \Psi + \dots,$$

where Δ is generically some elliptic linear operator.

Result: Ray–Singer torsion of Δ . This is often a topological invariant, but can have gravitational anomalies interesting in their own right.

Introduction	
Invariants	

Conclusions

Conclusions

Conclusions

Conclusions

Introduction	
Invariants	
Conclusions	
Conclusions	

Let's recall the main points of the talk:

- There is a vibrant mathematical community studying geometric invariants.
- These invariants can be defined, and often computed using methods of QFT.
- They can be relevant for phenomenology, and string model building in particular.
- Can be hard to compute explicitly (numerically??).
- Often necessary to resort to special cases with extended supersymmetry and rigid geometric structures where exact methods of QFT can be employed.

Thank you!

