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connected with reality in any meaningful sense.

Can lead to some (valid) complaints:

� What is it good for, if not testable or even a description of reality?

� If not physics, then mathematics?

� How can methods of physics with no rigorous mathematical basis (e.g. path

integral) be used to derive mathematically sound results?
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DISCLAIMER: Officially, I am a mathematical physicist. My work is often not

connected with reality in any meaningful sense.

Can lead to some (valid) complaints:

� What is it good for, if not testable or even a description of reality?

� If not physics, then mathematics?

� How can methods of physics with no rigorous mathematical basis (e.g. path

integral) be used to derive mathematically sound results?

Tentative responses:

� The physics often leads one towards deep conjectures about geometry (e.g.

Mirror Symmetry).

� Though the methods are mathematically iffy, the end results might still make

sense (e.g. well-defined invariants).

� Personal hope: To connect the mathematics with phenomenological model

building in particle physics and string phenomenology.
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String Theory is a higher dimensional UV-completion for the unification of the

fundamental forces (including gravity). Playground for KK thories.

String Phenomenology: We postulate a space-time of the form

MD = M4 ×Xn , ds2 = gµνdxµ
dxν + gabdxa

dxb

where D = 4 + n. Here M4 is the external space-time and Xn is usually taken

as compact and small.
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String Theory is a higher dimensional UV-completion for the unification of the

fundamental forces (including gravity). Playground for KK thories.

String Phenomenology: We postulate a space-time of the form

MD = M4 ×Xn , ds2 = gµνdxµ
dxν + gabdxa

dxb

where D = 4 + n. Here M4 is the external space-time and Xn is usually taken

as compact and small.

Idea:

� Deformations of Xn geometry ↔ Fields in 4d geometry.

� Look for 4d theories containing the Standard Model spectrum.

� Need mechanism to lift additional massless fields out of theory (moduli

stabilisation). This is the difficult bit!

� In particular, very hard to cook up models without runaway directions where

Xn decompactifies.

� Geometric invariants can be useful in this regard.
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In string phenomenology, one often ignores (quantum) effects of fields

propagating in the internal directions of Xn.

� Hard then to stabilize all moduli (runaway directions + extra massless fields).

� These quantum effects must eventually be included to have a consistent

model.
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In string phenomenology, one often ignores (quantum) effects of fields

propagating in the internal directions of Xn.

� Hard then to stabilize all moduli (runaway directions + extra massless fields).

� These quantum effects must eventually be included to have a consistent

model.

Threshold corrections:

� Such internal quantum effect are colloquially called threshold corrections.

� Often required to get the right RG-flow of effective field theory couplings, etc.

� Might help with moduli stabilisation: Generate non-perturbative couplings in

effective physics.

� Drawback: Often hard to compute.
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In special cases (often with supersymmetry, etc) the computation of threshold

corrections simplify: They derive from topological QFTs.
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In special cases (often with supersymmetry, etc) the computation of threshold

corrections simplify: They derive from topological QFTs.

The gist:

� The internal space Xn is equipped with some geometric structure Ψ
(gauge-field, metric, complex structure, etc).

� The geometric structure Ψ is governed by some topological action S(Ψ)
deriving from the (stringy) higher-dimensional supergravity.

� Moduli space: Space of solutions of Ψ to equations of motion δS(Ψ) = 0.
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In special cases (often with supersymmetry, etc) the computation of threshold

corrections simplify: They derive from topological QFTs.

The gist:

� The internal space Xn is equipped with some geometric structure Ψ
(gauge-field, metric, complex structure, etc).

� The geometric structure Ψ is governed by some topological action S(Ψ)
deriving from the (stringy) higher-dimensional supergravity.

� Moduli space: Space of solutions of Ψ to equations of motion δS(Ψ) = 0.

Quantum corrections: We quatize S(Ψ)

Z(Xn) =

∫

DΨ eiS(Ψ)

Note: This is a topological invariant associated to the geometry Xn (integrate

over geometric structures). Threshold corrections are associated to such

topological invariants of internal geometries.
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Chern-Simons (CS) theory appears in string compactifications when higher

dimensional objects called branes are wrapped on sub-manifolds M3 within Xn.
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Chern-Simons (CS) theory appears in string compactifications when higher

dimensional objects called branes are wrapped on sub-manifolds M3 within Xn.

CS theory can be defined for a (curved) three-dimensional manifold M3,

equipped with a gauge theory and associated gauge connection Aa:

SCS(A) =

∫

M3

tr
(

Aa∂bAc +
2
3AaAbAc

)

ǫabc .

Note: CS-theory is defined without a metric ⇒ topological theory.
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Chern-Simons (CS) theory appears in string compactifications when higher

dimensional objects called branes are wrapped on sub-manifolds M3 within Xn.

CS theory can be defined for a (curved) three-dimensional manifold M3,

equipped with a gauge theory and associated gauge connection Aa:

SCS(A) =

∫

M3

tr
(

Aa∂bAc +
2
3AaAbAc

)

ǫabc .

Note: CS-theory is defined without a metric ⇒ topological theory.

Equations of motion (suppressed gauge indecies):

Fab = ∂[aAb] +A[aAb] = 0 .

These correspond to flat gauge bundles.

The moduli space of flat gauge bundles on a compact space is finite-dimensional.

Gives rise to a finite number of fields in the effective theory.
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We define the partition function for a gauge group G (e.g. G = SU(N))

Z(M3, G) =

∫

DAeiS(A) .

No metric dependence ⇒ Z(M3, G) should be an invariant [Witten ’89,

Reshetikhin-Turaev ’91], depending only on the topological date of M3 and the gauge

group G.
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We define the partition function for a gauge group G (e.g. G = SU(N))

Z(M3, G) =

∫

DAeiS(A) .

No metric dependence ⇒ Z(M3, G) should be an invariant [Witten ’89,

Reshetikhin-Turaev ’91], depending only on the topological date of M3 and the gauge

group G.

One can use Z(M3, G) to extract other interesting invariants of M3. E.g. the

one-loop partition function [Witten ’89], and:

� A perturbative computation of Z(M3, G) leads to the definition of universal

perturbative invariants, independent of the gauge group [Axelrod-Singer ’91].

� CS theory is related to the topological open string [Witten ’92] ⇒ relations to

Gromov-Witten invariants by open-closed string duality [Vafa ’01, ..]..

� Expectation values of Wilson loops: Knot invariants proportional to the

Jones Polynomial of the knot [Witten ’89, ..].

The study of quantum CS theory is a fruitful endeavour to this date.
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There are many other generalisation and (quasi) topological theories which

deserve mentioning:

� Holomorphic Chern-Simons theory (on six-dimensional Calabi-Yau

manifolds): Give rise to Donaldson-Thomas invariants.

� Different types of volume (Hitchin) functionals in ordinary, generalised and

exceptional geometry.

� Kodaira-Spencer gravity and Wittens topological strings.

� Generalisations combining gauge and gravitational degrees of freedom (my

own work in heterotic string theory).

These all appear in different parts of string geometry, sometimes with

equivalences (string dualities) between them.
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Explicit computation (resulting in actual numbers) for invariants can be very tricky.

Exact methods in QFT such as localisation can be useful. Usually requires

extended supersymmetry implying a more rigid geometric structure.

Localisation: Reduces formal expression (path integrals) to integrals over finite

dimensional moduli space of classical solutions which can in principle be

performed (and sometimes is).
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Explicit computation (resulting in actual numbers) for invariants can be very tricky.

Exact methods in QFT such as localisation can be useful. Usually requires

extended supersymmetry implying a more rigid geometric structure.

Localisation: Reduces formal expression (path integrals) to integrals over finite

dimensional moduli space of classical solutions which can in principle be

performed (and sometimes is).

First step: One-loop computation. Compute the partition function of the

quadratic approximation to the action. This action Is usually of the form

S(Ψ) =

∫

Xn

δΨ∗∆δΨ+ .. ,

where ∆ is generically some elliptic linear operator.

Result: Ray–Singer torsion of ∆. This is often a topological invariant, but can

have gravitational anomalies interesting in their own right.
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Let’s recall the main points of the talk:

� There is a vibrant mathematical community studying geometric invariants.

� These invariants can be defined, and often computed using methods of QFT.

� They can be relevant for phenomenology, and string model building in

particular.

� Can be hard to compute explicitly (numerically??).

� Often necessary to resort to special cases with extended supersymmetry and

rigid geometric structures where exact methods of QFT can be employed.
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Thank you for your attention!
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