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Global fits

Many observables 
One theory
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Some GAMBIT physics results

CMSSM, NUHM1, NUHM2: 
1705.07935
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Fig. 2: Left: The profile likelihood ratio in the CMSSM, for m0 and m1/2 (top) and tan — and A0 (bottom), with explicit 68%
and 95% CL contour lines drawn in white, and the best fit point indicated by a star. Right: Colour-coding shows the mechanisms
active in models within the 95% CL contour for avoiding thermal overproduction of neutralino dark matter, through either
chargino co-annihilation, resonant annihilation via the A/H funnel, or stop co-annihilation. Other potential mechanisms (e.g. stau
co-annihilation) are not present, as they do not lie within the 95% CL contour.

We now see that relaxing the relic density con-
straint to an upper limit opens up a much richer set of
phenomenologically-viable scenarios, with lighter Hig-
gsino or mixed Higgino-bino LSPs. From the perspective
of global fits, treating the relic density as an upper bound
is a conservative approach, and allows us to test whether
the preference for heavy spectra found in recent studies
[115, 146, 308] persists even when a greater variety of
light LSPs is permitted.

The right panel of Fig. 1 shows that at 95% CL,
all of the identified annihilation mechanisms (stop co-
annihilation, A/H-funnel and chargino co-annihilation)
permit solutions where the measured relic density is fully
accounted for, as well as scenarios where only a very

small fraction of the DM relic abundance is explained
in the CMSSM. The fit does not demonstrate any clear
preference for the relic density to be under-abundant or
very close to the measured value. Looking at the top
of this plot, we indeed see the established picture for
chargino co-annihilation discussed above, where a pure
Higgsino DM candidate should have a mass of around
1 TeV to fit the observed relic density.

In Fig. 2, we show 2D CMSSM joint profile likeli-
hoods for m0 and m1/2, as well as for tan — and A0.
Here the plots include both positive and negative µ, and
are again coloured by relic density mechanism. We see
a large region of high likelihood at large m0 and m1/2,
consisting of overlapping chargino co-annihilation and
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Fig. 3: Left: Joint profile likelihoods in the µ–M1 (top) and M2–m
f̃

planes (bottom). Stars indicate the point of highest likelihood
in each plain, and white contours correspond to the 1‡ and 2‡ CL regions with respect to the best-fit point. Right: Coloured regions
indicating in which parts of the 2‡ best-fit region di�erent co-annihilation and funnel mechanisms contribute to keeping the relic
density low. The best-fit point in each region is indicated by a star with the corresponding colour.

of Fig. 3). Because the MSSM7 employs a common
sfermion soft-mass parameter m

2
f̃

at the input scale
(Q = 1 TeV in our case), mass splittings among di�er-
ent sfermions are mostly generated by varying amounts
of mixing. In comparison, the contribution from RGE
running from Q = 1 TeV to Q = MSUSY, which splits
m

2
f̃

into individual soft masses, is generally subdomi-
nant.

In the tree-level stop mass matrix the o�-
diagonal element is vyt(Au3 sin — ≠ µ cos —), while it
is vyb,· (Ad3 cos — ≠ µ sin —) in the sbottom and stau
mass matrices, where yt,b,· are the fermion Yukawa cou-
plings and v ¥ 246 GeV. Because increased left-right
mixing reduces the mass of the lighter of the two mass
eigenstates, the large top Yukawa ensures that t̃1 is the

lightest sfermion across most of the allowed parameter
space (including for models that exhibit sbottom co-
annihilation). With 3 Æ tan — Æ 70 the terms Au3 sin —

(stop) and µ sin — (sbottom and stau) dominate the
sfermion mixing in large regions of parameter space.
The dependence on large µ to obtain a sbottom mass
significantly lower than the mass set by the common
m

f̃
parameter explains why the sbottom co-annihilation

region does not extend as far to small µ as the stop co-
annihilation region in Fig. 3. Also, since yb ¥ 2.5y· , the
lightest stau remains heavier than the lightest sbottom
in the regions of parameter space with large mixing for
the down-type sfermions, which explains the absence
of any region dominated by stau co-annihilation in our
results.

EW-MSSM: 1809.02097MSSM7: 1705.07917

Vector and fermion Higgs portal DM: 
1808.10465Scalar Higgs portal DM (Z2 & Z3): 

1705.07931, 1806.11281
Right-handed neutrinos: 
1908.02302

G AM B I T
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• A typical BSM global fit requires O(10M) parameter samples


• Need fast, yet sufficiently accurate, theory predictions…  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One of the most CPU-expensive theory predictions:  
Higher-order BSM production cross-sections for LHC predictions

 8

Evaluation time for a single parameter point: 
~minutes/hours…
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Let’s see if we can speed things up with some smart regression…

 9
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2. The ideal solution
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f(x)

x
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f(x)

x

?
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f(x)

x

?
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• Need to make an educated guess for the 
unknown f at any given x 

• Being sensible Bayesians, we know we should 
quantify our beliefs about f using probabilities 
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f(x)

x

? ??

x1 x2 x3

Consider three unknown function values: f1, f2, f3
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f(x)

xx1 x2 x3

p(f1)

p(f2) p(f3)

Could formulate three independent prior beliefs…
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f(x)

xx1 x2 x3

p(f1)

p(f2) p(f3)

f1

…but then learning what f1 is won’t tell us anything about f2 or f3
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f(x)

xx1 x2 x3

p(f1, f2, f3)

Need a joint prior → includes our belief about how f1, f2 and f3 are correlated
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f(x)

xx1 x2 x3

p(f1, f2, f3) → p(f2, f3 | f1)

f1

Now learning f1 tells us something about probable values for f2 and f3
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f(x)

xx1 x2 x3

p(f1, f2, f3, …)

Limit of Δx → 0: joint prior p(f1, f2, f3, …) → a prior on function space

…
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f(x)

xx1 x2 x3

p(f1, f2, f3, …)

Limit of Δx → 0: joint prior p(f1, f2, f3, …) → a prior on function space

…



Anders Kvellestad  23

The ideal solution: 

• Incorporate all our prior knowledge about the problem in a joint prior  
p(f1, f2, f3, …) of any form we choose 


• Perform the full, expensive calculation of f(x) for some of the x-values


• For any other x-value x’: obtain our best guess for the corresponding f’  
in the form of the posterior p(f’ | f1, f2, …) 

But doing this with arbitrary prior pdfs is not practically feasible… 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3. The pragmatic solution
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Gaussian processes 

• Gaussian process: an infinite set of variables such that for any finite collection of 
these variables, the joint pdf is a multivariate Gaussian distribution 


• Defined by a mean and a covariance matrix 


• The multivariate Gaussian has some very important properties:


• marginalising (intergrating) out some variables gives another Gaussian


• conditioning on some variables gives another Gaussian 

What this means for regression 

• Start from joint Gaussian prior  


• Generally intractable pdf calculations now reduce to analytical expressions 
for a new mean and a new covariance matrix 


• In particular: simple, closed-form expression to get the posterior from the prior,  
p(f1, f2, …, f’) → p(f’ | f1, f2, …)
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Gaussian processes regression 

• Use probabilistic inference to  
learn a function from data in an 
interpretable, yet non-parametric  
framework


• A major advantage: the probabilistic 
framework automatically provides a 
regression uncertainty 


• Main drawback: given N data points, 
must invert the N x N covariance matrix 
→ can’t use too large datasets  
(but there are ways to alleviate the problem) 
 

• Standard GP reference: Rasmussen & Williams, 
Gaussian Processes for Machine Learning  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Choosing our Gaussian prior 

• Need to specify: 

• the means E[fi] 

• the covariance cov(fi,fj) for all pairs (fi,fj) 


• Do this indirectly by choosing 

• a mean function m(x), such that  

E[fi] = m(xi) 
• a covariance (kernel) function k(x,x’)  

such that cov(fi,fj) = k(xi,xj) 

• The art of GP regression:


• Choose/design k(x,x’) to match what  
you expect about the unknown f(x)

x1 x2 x3

p(f1, f2, f3, …)

… x

f(x)
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[Slide from Jeriek Van den Abeele]
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[Slide from Jeriek Van den Abeele]
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[Slide from Jeriek Van den Abeele]
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[Slide from Jeriek Van den Abeele]
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The covariance function hyperparameters 

• Typically don’t choose a fully specified k(x, x’), but rather some 
parameterised function k(x, x’ ; θ) 

• To be fully consistent (Bayesian): introduce prior p(θ) and marginalise  
over θ to obtain the posterior  
 
 
 
 
…but this is computationally very expensive 


• Common approach: Fix hyperparameters by maximising the log-likelihood 
 
 
 
Conceptually: adjust your prior until the belief it assigned to the known 
function values («training points») is maximised.
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4. The result
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A. Buckley, AK, A. Raklev, P Scott, J.V. Sparre,  
J. Van den Abeele, I. A. Vazquez-Holm 

[arXiv:2006.16273] 
github.com/jeriek/xsec

xsec: the cross-section 
evaluation code 
• A new Python tool 


• Pre-trained GPs that evaluate BSM 
production cross-sections at NLO


• First version: BSM = SUSY


• All strong SUSY cross-sections in the 
MSSM-24 for LHC @ 13 TeV 

• Provides pdf, scale and αs uncertainties,  
in addition to the subdominant GP 
regression uncertainty


• pip installable, source code on github
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gluino—gluino
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gluino—squark
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squark—squark
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squark—antisquark
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Summary
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• Theory space is huge — need fast ways to evaluate theory predictions


• One approach: ML-based regression techniques 


• Gaussian process regression: 

• is a Bayesian approach, so it makes sense :)

• naturally incorporates prior knowledge :)

• automatically provides regression uncertainty :)

• gets complicated for large datasets :( 


• xsec 1.0 is released — give it a try if you need some SUSY cross-sections
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• Theory space is huge — need fast ways to evaluate theory predictions


• One approach: ML-based regression techniques 


• Gaussian process regression: 

• is a Bayesian approach, so it makes sense :)

• naturally incorporates prior knowledge :)

• automatically provides regression uncertainty :)

• gets complicated for large datasets :( 


• xsec 1.0 is released — give it a try if you need some SUSY cross-sections

Thank you!
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Bonus content
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[Slide from Jeriek Van den Abeele]
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[Slide from Jeriek Van den Abeele]
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[Slide from Jeriek Van den Abeele]
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Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, 
FeynHiggs, FlexibleSUSY, gamLike, 
gm2calc, HiggsBounds, HiggsSignals, 
MicrOmegas, nulike, Pythia, SPheno, 
SUSYHD, SUSYHIT, SuperIso, Vevacious, 
…

Backends

Diver, GreAT, MultiNest, 
PolyChord, TWalk, grid, random, 
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

G AM B I T
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• LHC particle searches: Full Poisson  
likelihood from fast MC simulation of LHC 
searches


• Parallellized MC event generation and 
analysis loop inside ColliderBit


• Event generation with Pythia 8


• Fast detector simulator: BuckFast 
(4-vector smearing)


• Focus on speed, as required for use in  
global fits


• Extensive list ATLAS/CMS searches  
and more being added…


• LEP limits (SUSY): Calculate σ × BR 
and check against published limits

5

Cross-section calculation

Veto point if small

Default: Pythia 8

MC event

generation

Default: Pythia 8

Detector

simulation

Default: BuckFast

Event analyses

. . .
N cores

(OpenMP)

MC event

generation

Default: Pythia 8

Detector

simulation

Default: BuckFast

Event analyses

Statistical routines

Fig. 1: Schematic diagram of the ColliderBit processing chain for
LHC likelihoods.

For many models, these are the state-of-the-art. For
models where an NLO (or better) calculation exists,
e.g the MSSM, this is a conservative approximation, as
the k-factors are predominantly greater than one. The
LO+LL MSSM cross-sections are considerably quicker
to evaluate than the full NLO results obtained using
e.g. Prospino [42–44]. A single evaluation of just the
strong production cross-sections for a CMSSM bench-
mark point, with all relevant processes kinematically
available, takes around 15 minutes of CPU time on a
modern processor using Prospino 2.1 (Intel Core i5 at
2.6GHz). This is clearly unusable in a scan where the
evaluation of a single parameter point must be done in
times on the order of a few seconds. Although a fast
interpolation routine with added NLL corrections ex-
ists in NLL-fast [45–49], this interpolation is limited to
models with degenerate squark masses.

With the improvement to NLO+NLL, the error from
the factorisation and renormalisation scales has been
shown to be as low as 10% [46] for a wide range of
processes and masses; however, PDF and ↵s uncertain-
ties must be included in the total error budget. These
increase with the sparticle masses because the PDFs are
most poorly constrained at large scales and at large par-
ton x. As an example, at 8 TeV NLL-fast 2.1 gives errors
of (+24.3%,�22.2%) and (+8.3%,�7.3%), for the PDF
and ↵s, respectively, using the MSTW2008NLO PDF
set [50], with gluino and squark masses set to 1.5 TeV.

Num. cores t (105 events) Speed-up

1 479 sec 1
4 148 sec 3.2
8 121 sec 4.0
16 79 sec 6.1
20 81 sec 5.9

Table 1: Time taken for the ColliderBit LHC likelihood calcula-
tion as a function of the number of cores, for 100,000 SUSY events
at the SPS1a parameter point [53, 54], including all sub-processes.
The processes were run on a single computer node, with ISR, FSR,
and full hadronisation enabled, but multiple parton interactions
and tau decay spin correlations disabled. GAMBIT was compiled
with full optimisation settings (cf. Section 11 of Ref. [1]).

Because 1.5 TeV is at the edge of the LHC reach at that
energy, the total error budget here will not drop much
below 25% even with NLO+NLL cross-sections.3

In light of the above, we take the conservative path
of calculating likelihoods with the LO Pythia 8 cross-
sections for the LHC. Assigning errors to these cross-
sections is rather meaningless, considering the mono-
tonic nature of LO scale-dependence, and the fact that
the LO cross-sections in BSM models are known to al-
most always lie significantly below the NLO and higher
order cross-section, sometimes by as much as a factor
of two.4 The LO cross-sections are hence nearly always
more conservative than the lower edge of the most pes-
simistic NLO uncertainty band due to renormalisation
scale systematics. We have verified that this choice, com-
bined with the approximations used in the event and
detector simulation, results in limits equal to or more
conservative than those in the included ATLAS and
CMS analyses (see Section 2.1.7). In future releases we
will allow the user to supply cross-sections as input to
the event generation, allowing one to calculate them
using any preferred choice of external code (known in
GAMBIT as a “backend”).

2.1.4 Monte Carlo event generation

For the ColliderBit event generation, we supply an inter-
face to the Pythia 8 [38, 39] event generator, alongside
custom code that parallelises the main event loop of
Pythia using OpenMP.5 This substantially reduces the
runtime, as seen in Table 1.

For the purposes of BSM searches, many time-
consuming generator components also add little to the

3With the CTEQ6.6M PDF set [51], the errors increase to
(+63.1%,�38.5%) and (+15.6%,�10.3%); these uncertainties
will reduce somewhat as PDF fits including higher-x LHC data
become available.
4For a recent thorough exploration of K-factors in the MSSM up
to approximate NNLO+NNLL order see [? ] and Fig. 2 within.
5For an earlier similar approach, see Ref. [52].

[arXiv:1705.07919]
 50

ColliderBit

G AM B I T
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The basic steps of a BSM global fit

• Choose your BSM model and parameterisation 


• Construct the combined likelihood function including observables from 
collider physics, dark matter, flavor physics, +++


 

• Use sophisticated scanning techniques to explore the likelihood 
function across the parameter space of the theory


• Test parameter regions in a statistically sensible way — not just single 
points (parameter estimation) 

• Test different theories the same way (model comparison) 
 

L = LcolliderLDMLflavorLEWPO . . .

 51
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Comparing BSM theories to data

 52

…

How to compare the predictions of a theory against many 
experimental results?
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