Speaker
Description
Hadron production measurement in small collision systems (such as p+Al, p+Au, d+Au, $^3$He+Au) may allow to explore the minimal conditions for the quark-gluon plasma formation. Such research has become particularly crucial with the observation of the light hadrons collective behavior in small collision systems. Among the large variety of light hadrons, φ-meson is of particular interest since its production is sensitive to the presence of the quark-gluon plasma formation signatures. To interpret the nuclear modification effects and to study the process of the possible quark-gluon plasma formation from different perspectives the comparisons with theoretical model predictions are needed. Current report presents the comparison of the obtained experimental results on φ-meson production in small collision systems (p+Al, p+Au, d+Au, $^3$He+Au) at $\sqrt{s_{_{NN}}} = 200$ GeV to default and string melting versions of the AMPT model and PYTHIA 8.3/Angatyr model predictions. The results suggest that system volume and lifetime in p+Au, d+Au, and $^3$He+Au collisions are sufficient for the small quark-gluon plasma droplet formation, whereas p+Al collisions are well described in the absence of hot and dense matter effects.