Aug 2 – 6, 2021
online
Europe/Brussels timezone

Collective Monte Carlo updates through tensor network renormalization

Aug 3, 2021, 9:40 AM
20m
online

online

Parallel contribution H. Statistical Methods for Physics Analysis in the XXI Century Parallels Track H

Speaker

Dr Sofyan Iblisdir (U. Barcelona)

Description

We introduce a Metropolis-Hastings Markov chain for Boltzmann distributions of classical spin systems. It relies on approximate tensor network contractions to propose correlated collective updates at each step of the evolution. We present benchmarks for a wide variety of instances of the two-dimensional Ising model, including ferromagnetic, antiferromagnetic, (fully) frustrated and Edwards-Anderson spin glass cases, and we show that, with modest computational effort, our Markov chain achieves sizeable acceptance rates, even in the vicinity of critical points. In each of the situations we have considered, the Markov chain compares well with other Monte Carlo schemes such as the Metropolis or Wolff algorithm: equilibration times appear to be reduced by a factor that varies between 40 and 2000, depending on the model and the observable being monitored. We also present an extension to three spatial dimensions, and demonstrate that it exhibits fast equilibration for finite ferro and antiferromagnetic instances. Additionally, and although it is originally designed for a square lattice of finite degrees of freedom with open boundary conditions, the proposed scheme can be used as such, or with slight modifications, to study triangular lattices, systems with continuous degrees of freedom, matrix models, a confined gas of hard spheres, or to deal with arbitrary boundary conditions. Joint work with Miguel Frías-Pérez, Michael Mariën, David Pérez García, and Mari Carmen Bañuls (arXiv:2104.13264).

Primary author

Dr Sofyan Iblisdir (U. Barcelona)

Presentation materials

There are no materials yet.