Aug 2 – 6, 2021
Europe/Brussels timezone

Quarkonia dynamics in the QGP with open quantum systems

Aug 6, 2021, 4:25 PM


Parallel contribution D: Deconfinement Parallels Track D


Stéphane Delorme (Subatech)


In recent years, a significant theoretical effort has been made towards a dynamical description of quarkonia inside the Quark-Gluon Plasma (QGP), using the open quantum systems formalism. In this framework, one can get a real-time description of a quantum system (here the quarkonium) in interaction with a thermal bath (the QGP) by integrating out the bath degrees of freedom and studying the system reduced density matrix.

We investigate the real-time dynamics of a correlated heavy quark-antiquark pair inside the QGP using a quantum master equation previously derived from first QCD principles in [1]. The full equation is directly resolved in 1D to lessen computing costs and is used for the first time to gain insight on the dynamics in both a static and evolving medium following a Björken-like temperature evolution. The role of color degrees of freedom will be studied by comparing the case of a QED and QCD plasma. Several parametrizations will be explored, by modifying the initial state (color state of the pair, initial excited state...) or the complex potential used.

[1]-J. P. Blaizot and M. A. Escobedo, Quantum and classical dynamics of heavy quarks in a quark-gluon plasma, J. High Energy Phys. 06 (2018) 034.

Primary authors

Presentation materials