Speaker
Description
String tension is one of the characteristic quantity in confining gauge theories. In SU(N) gauge theories, there is a center symmetry, or $\mathbb{Z}_N$ 1-form symmetry, which acts on the test quarks, and this is the symmetry which controls the spectral properties of confining strings in the infrared regime. This is sometimes called as an $N$-ality rule.
In this talk, I will talk about some models of confining gauge theories, where the N-ality rule is violated. That is, the center symmetry is again given by Z_N as in the case of SU(N) theory, while the confining strings of Wilson loops carry detailed information on their representations beyond N-ality. Then, I will uncover that those models enjoy the non-invertible symmetry, and they can naturally explain why the N-ality rule can be violated. I would also like to talk about speculation on possible applicability to non-Abelian gauge theories in higher dimensions.
This talk is based on the works, https://arxiv.org/abs/2101.02227 and https://arxiv.org/abs/2104.01824, in collaboration with Mendel Nguyen and Mithat Unsal.