Speaker
Dr
James Lucietti
(University of Edinburgh)
Description
An asymptotically flat gravitational instanton is a four-dimensional, Ricci flat, complete Riemannian manifold that approaches $S^1 \times \mathbb{R}^3$ at infinity. This includes the notable example of the euclidean Kerr instanton, which was conjectured by Gibbons, Hawking and Lapedes to be the unique solution in this class. Remarkably, over 30 years later, Chen and Teo constructed an explicit counterexample to this Riemannian version of the no-hair conjecture. I will discuss recent uniqueness and existence theorems for instantons in this class that possess a torus symmetry, which includes the aforementioned examples.
Primary author
Dr
James Lucietti
(University of Edinburgh)