30 May 2022 to 3 June 2022
University of Stavanger
Europe/Oslo timezone

Locating black hole horizons via curvature invariants: foundation and applications

31 May 2022, 13:00
45m
Zoom

Zoom

Speaker

Daniele Gregoris (Jiangsu University of Science and Technology)

Description

The teleological nature of black hole horizons, e.g. for finding their location it is necessary to track the focussing properties of a bundle of light rays in the full spacetime although general relativity is a local theory, has been tamed a few years ago. In fact, it has been proved that the location of the horizon corresponds to the algebraic zeroes of some appropriate curvature invariants. In my talk, I will elaborate on the mathematical foundation of this technique and also point out some motivations from the physical side for trying to further extend it. Specifically, I will discuss the applicability of this method in lower-dimensional gravitational theory in which the Weyl part of the curvature is trivial mentioning some potential physical applications in light of the AdS/CFT correspondence. Next, I will get back to astrophysical settings discussing the evolution of the horizon of the McVittie spacetime, and of another black hole spacetime which arises as a solution in a number of different gravitational theories. I will also explain why it is relevant to know the location of the dynamical apparent horizon in some spacetimes in light of the cosmological holographic principle. Finally, I will show that a certain combination of curvature invariants may serve as an appropriate notion of density of gravitational entropy consistent with the Weyl curvature conjecture.

Primary author

Daniele Gregoris (Jiangsu University of Science and Technology)

Presentation materials

There are no materials yet.