Fano Varieties in Stavanger

Europe/Oslo
02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202 (University of Stavanger, Norway)

02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

University of Stavanger, Norway

Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:
Helge Ruddat (University of Stavanger), Linda Borho (University of Stavanger)
Description

We are delighted to announce our upcoming three-day conference that we are running at the University of Stavanger about new developments for Fano varieties.

This is the kick-off meeting for the Shape2030 grant: https://www.uis.no/nb/forskning/realfag/12-millioner-til-grunnforskning-i-algebraisk-geometri

Speakers:
Belmans, Pieter (Utrecht)
Corti, Alessio (IC London)
Felten, Simon (Oxford)
Filip, Matej, (Ljubljana)
van Garrel, Michel (Birmingham)
Gräfnitz, Tim (Hannover)
Katzarkov, Ludmil (Miami)
Moraga, Joaquin (UCLA)
Park, Jihun (Pohang)
Petrotou, Vasiliki (Paris)
Raukh, Anna-Maria (Stavanger)
Rennemo, Jørgen Vold (Oslo)
Sano, Taro (Kobe)
Tillmann-Morris, Hannah (Leipzig)
You, Fenglong (Zürich)

If interested in participating, please contact the organizer as soon as possible.

Slides of presentations
Participants
  • Alessio Corti
  • András Sándor
  • Anna Maria Raukh
  • Arvid Siqveland
  • David Ploog
  • Eirik Eik Svanes
  • Erik Paemurru
  • Fenglong You
  • Gianni Petrella
  • Hannah Tillmann-Morris
  • Helge Ruddat
  • Innocent Opara
  • Jihun Park
  • Joaquin Moraga
  • Jørgen Rennemo
  • Ludmil Katzarkov
  • Martin Gulbrandsen
  • Matej Filip
  • Michel van Garrel
  • Pieter Belmans
  • Samuel Johnston
  • Simon Felten
  • Taro Sano
  • Thamarai Valli Venkatachalam
  • Tim Gräfnitz
  • Vasiliki Petrotou
  • Xianyu Hu
    • 09:30 10:30
      Singular Log Structures and Fano Threefolds 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      We introduce a class of singular log schemes in 3-dimensions and conjecture that log schemes in this class admit log crepant log resolutions. We provide some examples as evidence and relate the conjecture to the conjecture made joint work with Filip&Petracci, the Gross-Siebert program and the construction of Fano 3-folds.

      Speaker: Prof. Alessio Corti
    • 11:00 12:00
      Fano moduli for curves and quivers 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      Moduli spaces of vector bundles on a curve are a classical and well-studied class of Fano varieties, with many interesting properties. Moduli spaces of quiver representations of an acyclic quiver are likewise (almost) Fano, with many interesting properties. There exists a rich dictionary between the two types of moduli spaces, explaining how phenomena for moduli of bundles have an analogue for moduli of representations, and vice versa. Sometimes the analogy informs us what to expect on the curve side, sometimes it informs us what to expect on the quiver side. I will survey aspects of this dictionary, and describe some important open problems for these.

      Speaker: Prof. Pieter Belmans
    • 13:00 14:00
      Tom & Jerry triples unprojection format 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      Unprojection is a theory introduced by Miles Reid which constructs more complicated Gorenstein rings starting from simpler data. This theory has found many applications in algebraic geometry and also in algebraic combinatorics. Tom and Jerry are two formats of unprojection defined and named by Miles Reid which lead to the construction of codimension 4 Gorenstein rings starting from codimension 3 Gorenstein rings. In this talk, we introduce a new unprojection format which we call Tom & Jerry triples. This format, generalizes the Tom and Jerry unprojection formats and constructs codimension 6 Gorenstein rings starting from codimension 3 Gorenstein rings. As an application, we will construct two families of codimension 6 Fano 3-folds in weighted projective space which appear in the Graded Ring Database.

      Speaker: Dr Vasiliki Petrotou
    • 14:15 15:15
      Categorical Torelli theorems for weighted hypersurfaces and the Veronese double cone 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      The derived category of a Fano variety will often have a semiorthogonal decomposition consisting of a sequence of exceptional line bundles and a remaining subcategory, which we will call the Kuznetsov category. The categorical Torelli problem asks whether knowing this category up to exact equivalence is enough to determine the variety up to isomorphism. We will explain how a technique based on a computation of the Hochschild-Serre algebra of the category shows that the answer is yes in many cases, including the case of a Veronese double cone. This is joint work with Xun Lin and Shizhuo Zhang.

      Speaker: Prof. Jørgen Rennemo
    • 15:25 15:45
      bus from Kjølv Egeland hus to Parkering for Dalsnuten 20m 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      going on a beautiful hike overseeing Gandsfjord

    • 16:00 18:30
      hike on Dalsnuten 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:
    • 18:40 19:00
      bus from Parkering for Dalsnuten to Helge's house 20m 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      transfer from hike location to Helge's house for dinner

    • 19:05 20:55
      dinner at Helge's house
    • 21:00 21:20
      bus from Helge's house to Ydalir hotel 20m 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      back to the hotel

    • 08:30 09:30
      Fano 3-Fold weighted Hypersurfaces 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      In this talk, we will explore the 130 families of Fano 3-fold weighted hypersurfaces, with a particular focus on their non-rationality and K-stability. This is an ongoing collaboration with T. Okada.

      Speaker: Prof. Jihun Park
    • 09:45 10:45
      K-stability of Fano weighted hypersurfaces 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      K-stability (or existence of Kähler-Einstein metrics) of
      explicit Fano varieties has been studied for a long time.
      Delta invariants (stability thresholds) detect the K-stability of Fano
      varieties.
      Moreover, Abban--Zhuang developed a powerful method to compute the
      delta invariants by adjunctions.
      In this talk, I will explain our recent results on the K-stability of
      some Fano weighted hypersurfaces via the Abban--Zhuang method.

      Speaker: Prof. Taro Sano
    • 11:00 12:00
      New birational invariants for Fanos 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      In this talk we will introduce new birational invariants
      inspired by HMS and CFT.
      Many examples of nonrational and G nonrational
      invariants will be introduced.

      Speaker: Prof. Ludmil Katzarkov
    • 13:00 14:00
      Cluster type variety 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      Toric varieties are ubiquitous objects in algebraic geometry. A toric variety can be described as a (partial) compactification of an algebraic torus such that the volume form of the torus has poles along every divisor added in the compactification. In this talk, we will introduce the concept of
      cluster type varieties which are (partial) compactifications of algebraic tori such that the volume form has at most poles and no zeros along the boundary. These varieties have been considered by people in Mirror Symmetry, especially by Alessio Corti. In this talk, we will discuss questions regarding the detection of these varieties and their appearance in the classification of Fano varieties.

      Speaker: Prof. Joaquin Moraga
    • 14:15 15:15
      Birational mirrors to pairs of Laurent polynomials 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      Under mirror symmetry, deformation classes of Fano varieties are associated to mutation classes of maximally mutable Laurent polynomials (MMLPs). We expect birational relationships between the general members of two deformation classes to be reflected, in the pair of mirror mutation classes, as combinatorial relationships between two MMLPs.

      I will present an alternative construction of a Fano variety that is mirror to a given MMLP, which uses mirror theorems of the Gross-Siebert program. The resulting Fano variety is difficult to describe explicitly. However, when two given MMLPs are related by certain combinatorial conditions, the construction can be extended to include the construction of a birational map between the two Fano varieties produced.

      Applying all this to rigid MMLPs in two variables recovers all but one of the blow-ups in the chain of smooth del Pezzo surfaces.

      Speaker: Dr Hannah Tillmann-Morris
    • 15:30 18:30
      Surf course, including bus transfer to Hellestø stranden 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:
    • 19:30 21:30
      Conference dinner

      at CLARION HOTEL ENERGY
      +47 988 988 391
      https://www.strawberry.no/hotell/norge/stavanger/clarion-hotel-energy/

    • 08:30 09:30
      Some log singular surfaces with unobstructed deformations 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      The logarithmic Bogomolov-Tian-Todorov theorem guarantees that infinitesimal deformations of a proper log Calabi--Yau space over a log point are unobstructed once certain cohomological conditions are met. We know that these conditions are satisfied for log smooth and more generally log toroidal spaces. In this talk, I report ongoing joint work with Matthias Zach where we check the cohomological conditions for some families with more general log singularities by means of explicit computation.

      Speaker: Dr Simon Felten
    • 09:45 10:45
      Enumerative geometry of quantum periods 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      I talk about joint work with Helge Ruddat, Eric Zaslow and Benjamin Zhou interpreting the q-refined theta function of a log Calabi-Yau surface as a natural q-refinement of the open mirror map, defined by quantum periods of mirror curves for outer Aganagic-Vafa branes on the local Calabi-Yau threefold. The series coefficients are all-genus logarithmic two-point invariants, directly extending the relation found by the first three authors. The main part of the proof is combinatorial in nature, using a convolution relation for Bell polynomials, and thus works in any dimension. We find an explicit discrepancy at higher genus in the relation to open Gromov-Witten invariants of the Aganagic-Vafa brane, expressible in terms of relative invariants of an elliptic curve.

      Speaker: Dr Tim Gräfnitz
    • 11:00 12:00
      Relative mirror symmetry and some applications 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      We consider mirror symmetry for a log Calabi--Yau pair (X,D), where X is a Fano variety and D is an anticanonical divisor of X. The mirror of the pair (X,D) is a Landau--Ginzburg model (X^\vee, W), where W is a function called the superpotential. Following the mirror constructions in the Gross--Sibert program, W can be described in terms of Gromov--Witten invariants of (X,D). I will explain a relative mirror theorem for the pair (X,D). As applications, I will explain how to compute the superpotential W, the classical period of W and more.

      Speaker: Prof. Fenglong You
    • 13:00 14:00
      LSD Fanos 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      Condition LSD (log smooth degeneration) states that the pair (Y,D) of Y=Fano and D=smooth anticanonical divisor admits a normal crossings degeneration to a union of blow ups of toric varieties.

      Condition HDTV states that Y may be constructed via the HDTV mirror construction, a special case of intrinsic mirror symmetry.

      The expectation is that LSD <=> HDTV. Moreover, they imply the existence of an interesting function, shown to be modular in some cases, and special properties of Apéry numbers of Y. Even, there are some hints of links to rationality questions.

      Beyond dimension 2, a lot of this remains conjectural at best. Nonetheless, given the confluence of experts, this is an ideal place to discuss some preliminary results and paths forward.

      Speaker: Prof. Michel van Garrel
    • 14:15 15:15
      Lefschetz hyperplane theorem for weighted projective spaces and cohomological invariants of Fano hypersurfaces 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      Given a generic hypersurface of a fixed degree in a n-dimensional weighted projective space, we describe the cohomology groups H^k for k<n and establish an explicit formula for the pullback map. Our results extend classical Lefschetz hyperplane theorem to weighted projective spaces and cohomology with integer coefficients. These results can be applied to compute cohomological invariants of Fano 3-folds of this form.

      Speaker: Mrs Anna-Maria Raukh
    • 15:30 16:30
      Laurent polynomials and deformations of non-isolated Gorenstein toric singularities 1h 02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      02.04. Kjølv Egelands hus KE E-264; 03.04. Kjell Arholms hus KA U-136; 04.04. Kjølv Egelands hus KE A-202

      University of Stavanger, Norway

      Both buildings you find on Ullandhaug Campus: Kjølv Egelands hus: Kristine Bonnevies vei 22 Mazemap link to KE E-264: https://link.mazemap.com/StCpOfWl Kjell Arholms hus: Telegrafdirektør Heftyes vei 73 Mazemap link to KA U-134: https://link.mazemap.com/fkyDnR8T Mazemap link to KE A-202: https://link.mazemap.com/WQ2WNkz4 Lunch will be served at our new SIS building, next to Kjølv Egelands hus. Link below is for the room on the first day:

      We establish a correspondence between one-parameter deformations of an affine Gorenstein toric variety X, defined by a polytope P, and mutations of a Laurent polynomial f, whose Newton polytope is equal to P. If the Newton polytope P of f is two dimensional and there exists a set of mutations of f that mutate P to a smooth polygon, then, we show that the Gorenstein toric variety, defined by P, admits a smoothing. This smoothing is obtained by proving that the corresponding one-parameter deformation families are unobstructed and that the general fiber of this deformation family is smooth.

      Speaker: Prof. Matej Filip