1–6 Aug 2022
University of Stavanger
Europe/Oslo timezone

Quarks and triality in a finite volume

2 Aug 2022, 15:40
30m
EOJ (UiS)

EOJ

UiS

Main auditorium where also plenaries are held
Parallel Talk A: Vacuum structure and confinement Parallels Track A

Speaker

Lorenz von Smekal (Justus-Liebig University Giessen)

Description

In order to understand the puzzle of the free energy of an individual quark in QCD, we explicitly construct ensembles with quark numbers $N_V\neq 0\!\!\mod\! 3$, corresponding to non-zero triality in a finite subvolume $V$ on the lattice. We first illustrate the basic idea in an effective Polyakov-loop theory for the heavy-dense limit of QCD, and then extend the construction to full Lattice QCD, where the electric center flux through the surface of $V$ has to be fixed at all times to account for Gauss's law. This requires introducing discrete Fourier transfroms over closed center-vortex sheets around the spatial volume $V$ between all subsequent time slices, and generalizes the construction of 't Hooft's electric fluxes in the purge gauge theory. We derive this same result from a dualization of the Wilson fermion action, and from the transfer matrix formulation with a local $\mathbb{Z}_3$-Gauss law to restrict the dynamics to sectors with the required center charge in $V$.

Primary authors

Lorenz von Smekal (Justus-Liebig University Giessen) Mr Milad Ghanbarpour (Justuts-Liebig University)

Presentation materials