Speaker
Description
We will report on recent works featuring the parton distribution functions (DFs) of pion-like systems at experimental scales, following an approach which relies on the assumption that there is an effective charge defining an evolution scheme for DFs that is all-orders exact. Within this framework, strict lower and upper bounds on all Mellin moments of the valence-quark DFs are derived. Furthermore, valence, glue and all flavor sea DFs can be derived from contemporary results from numerical simulations of lattice-regularised QCD. The results from the exploited simulations are seen to obey the derived bounds and become plainly consistent with those obtained from Constinuum Schwinger methods, behaving at large values of the light-front momentum fraction as prescribed by QCD. Finally, we will discuss the extension of the same approach to the proton system.