1–6 Aug 2022
University of Stavanger
Europe/Oslo timezone

Optimal Test Statistics

1 Aug 2022, 16:10
30m
AR G-201 (UiS)

AR G-201

UiS

On the first floor above the ground floor in the AR building
Parallel Talk H. Statistical Methods for Physics Analysis in the XXI Century Parallels Track H

Speaker

Lukas Heinrich (TU Munich)

Description

The design of optimal test statistics is a key task in frequentist statistics and for a number of scenarios optimal test statistics such as the profile-likelihood ratio are known. By turning this argument around we can find the profile likelihood ratio even in likelihood-free cases, where only samples from a simulator are available, by optimizing a test statistic within those scenarios. We propose a likelihood-free training algorithm that produces test statistics that are equivalent to the profile likelihood ratios in cases where the latter is known to be optimal.

Primary author

Lukas Heinrich (TU Munich)

Presentation materials