Conveners
Parallels Track E: Monday II
- robert pisarski (brookhaven national laboratory)
Parallels Track E: Tuesday I
- Martin Hoferichter (University of Bern)
Parallels Track E: Tuesday II
- Michael Strickland (Kent State University)
Parallels Track E: Thursday I
- William Jay (Massachusetts Institute of Technology)
Parallels Track E: Thursday II
- Daniel Nogradi (Eotvos University)
Parallels Track E: Friday II
- Masaaki Tomii ()
The existence and location of the QCD critical point is an object of both experimental and theoretical studies. The comprehensive data collected by the NA61/SHINE during a two-dimensional scan in beam momentum (13A-150A GeV/c) and system size (p+p, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb) allows for a systematic search for the critical point – a search for a non-monotonic ...
NLO evolution of the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) equation with massless quarks was derived a few years ago. We make a step further to compute the evolution kernels focusing on the effects due to finite quark masses. To this goal, the light-cone wave function of a fast moving dilute hadronic projectile is computed up to ${\cal O}(g^3)$ in QCD coupling...
We present predictions for the second- and fourth-order curvature coefficients of the QCD phase transition line using the NNLO HTLpt-resummed thermodynamic potential. We present three cases corresponding to (i) $\mu_s = \mu_l = \mu_B/3$, (ii) $\mu_s=0$, $\mu_l = \mu_B/3,$ and (iii) $S = 0$, $Q/B = 0.4$, $\mu_l = \mu_B/3$. In all three cases, we find excellent agreement with continuum...
A well known technique to determine the decay amplitudes of non-leptonic B meson processes is QCD factorization. One of the main issues faced by this procedure is the analytical determination of power suppressed terms, for instance of annihilation topologies. In this talk we describe the extraction of the annihilation contributions from data. Our method is based on establishing a set of rules...
The recently observed 4.2-$\sigma$ tension between experimental measurement and theoretical prediction of the muon magnetic moment highlights the need for improved control of uncertainties. On the theoretical side, one of the contributions of interest is the hadronic light-by-light (HLbL). In the dispersive data-driven evaluation of the HLbL, certain short-distance constraints obtained by...
The discrepancy between the fixed-order (FOPT) and contour-improved (CIPT) expansions for tau hadronic spectral function moments has been a subject of intense investigations for more than a decade and constituted a major theoretical uncertainty for strong coupling determinations from hadronic tau decay spectral data. Recently, it has been shown by some of us that a discrepancy between the...
The LHCb Collaboration has recently discovered a structure around 6.9 GeV in the double-$J/\psi$ mass distribution, possibly a first fully-charmed tetraquark state $X(6900)$. Based on vector-meson dominance (VMD) such a state should have a significant branching ratio of decaying into two photons ($\gamma \gamma$). We show that the published ATLAS data for the light-by-light scattering may...
We analyze the sensitivity of the rare decays $\eta^{(\prime)}\to\pi^{0}\gamma\gamma$ and $\eta^{\prime}\to\eta\gamma\gamma$ to GeV-signatures of a leptophobic $B$ boson.
A controlled theoretical description of the amplitudes, based on vector meson dominance and the linear sigma model, along with the current experimental data, has allowed us place limits on the $B$ boson properties, i.e....
In the present work, we have studied the T-even subleading twist TMDs in the light-front quark-diquark model. Exclusively, we have studied their relations with the leading twist TMDs in the same model and, the question, how such relations are model (in)dependent, is discussed. We have also compared our results with the other quark models.
In this talk, we will discuss the BFKL leading logarithmic resummation, relevant for the Regge limit behavior of QCD scattering amplitudes, in the IR regulated effective action, which satisfies exact functional renormalization group equations. Using this framework we study, in the high-energy limit and at larger transverse distances the transition to a much simpler effective local Reggeon...
Since our recent publication on direct CP violation and the Delta I = 1/2 rule in $K \to \pi\pi$ decay which was made with G-parity boundary conditions, we have revisited this problem with a conventional lattice setup employing periodic boundary conditions and two lattice spacings to check our previous result and to improve the precision. We show that the physical amplitude, which corresponds...
Kaons participate in a number of flavour-changing neutral current decays that are highly suppressed in the Standard Model, which are therefore expected to be sensitive to new physics. Calculating the long-distance contributions to these decay modes is a challenging theoretical problem, and crucial for channels where these effects are dominant. Lattice QCD can provide a first-principles...
We present results of nucleon structure studies measured in 2+1 flavor QCD with physical light quarks in large spatial extents of about 10 and 5 fm. Our calculations are performed on 2+1 flavor gauge configurations generated by the PACS Collaboration with the stout-smeared $O(a)$ improved Wilson fermions and Iwasaki gauge action at $\beta$=1.82 corresponding to the lattice spacing of 0.085 fm....
In this talk, I will review recent progress in lattice calculations of heavy flavor physics. The focus will be on decays of B- and D-mesons and on modern techniques for controlling systematic errors.
Experimental searches for neutrinoless double-beta decay aim to determine whether the neutrinos are Dirac or Majorana fermions. Interpreting double-beta half-lives or experimental exclusions in terms of neutrino physics requires knowledge of the nuclear matrix elements, which are currently estimated from various nuclear models and carry a large model uncertainty. This talk will present...
Motivated by axion physics, the topological susceptibility at high temperature was calculated by several lattice groups. A comparison with the semi-classical calculation at high temperature is meaningful and the details of the instanton calculation is reviewed. The correct over-all factor in MSbar and high precision parametrization of the temperature dependence is presented.
We compute the topological susceptibility of high temperature QCD with 2+1 physical mass quarks using the multicanonical approach and the spectral projector estimate of the topological charge. This approach presents reduced lattice artifacts with respect to the standard gluonic one, and makes it possible to perform a reliable continuum extrapolation.